IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    中英文维基百科语料上的Word2Vec实验

    52nlp发表于 2015-03-12 13:13:25
    love 0

    最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了视线。维基百科官方提供了一个很好的维基百科数据源:https://dumps.wikimedia.org,可以方便的下载多种语言多种格式的维基百科数据。此前通过gensim的玩过英文的维基百科语料并训练LSI,LDA模型来计算两个文档的相似度,所以想看看gensim有没有提供一种简便的方式来处理维基百科数据,训练word2vec模型,用于计算词语之间的语义相似度。感谢Google,在gensim的google group下,找到了一个很长的讨论帖:training word2vec on full Wikipedia ,这个帖子基本上把如何使用gensim在维基百科语料上训练word2vec模型的问题说清楚了,甚至参与讨论的gensim的作者Radim Řehůřek博士还在新的gensim版本里加了一点修正,而对于我来说,所做的工作就是做一下验证而已。虽然github上有一个wiki2vec的项目也是做得这个事,不过我更喜欢用python gensim的方式解决问题。

    关于word2vec,这方面无论中英文的参考资料相当的多,英文方面既可以看官方推荐的论文,也可以看gensim作者Radim Řehůřek博士写得一些文章。而中文方面,推荐 @licstar的《Deep Learning in NLP (一)词向量和语言模型》,有道技术沙龙的《Deep Learning实战之word2vec》,@飞林沙 的《word2vec的学习思路》, falao_beiliu 的《深度学习word2vec笔记之基础篇》和《深度学习word2vec笔记之算法篇》等。

    一、英文维基百科的Word2Vec测试

    首先测试了英文维基百科的数据,下载的是xml压缩后的最新数据(下载日期是2015年3月1号),大概11G,下载地址:

    https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

    处理包括两个阶段,首先将xml的wiki数据转换为text格式,通过下面这个脚本(process_wiki.py)实现:

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
     
    import logging
    import os.path
    import sys
     
    from gensim.corpora import WikiCorpus
     
    if __name__ == '__main__':
        program = os.path.basename(sys.argv[0])
        logger = logging.getLogger(program)
     
        logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
        logging.root.setLevel(level=logging.INFO)
        logger.info("running %s" % ' '.join(sys.argv))
     
        # check and process input arguments
        if len(sys.argv) < 3:
            print globals()['__doc__'] % locals()
            sys.exit(1)
        inp, outp = sys.argv[1:3]
        space = " "
        i = 0
     
        output = open(outp, 'w')
        wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
        for text in wiki.get_texts():
            output.write(space.join(text) + "\n")
            i = i + 1
            if (i % 10000 == 0):
                logger.info("Saved " + str(i) + " articles")
     
        output.close()
        logger.info("Finished Saved " + str(i) + " articles")

    这里利用了gensim里的维基百科处理类WikiCorpus,通过get_texts将维基里的每篇文章转换位1行text文本,并且去掉了标点符号等内容,注意这里“wiki = WikiCorpus(inp, lemmatize=False, dictionary={})”将lemmatize设置为False的主要目的是不使用pattern模块来进行英文单词的词干化处理,无论你的电脑是否已经安装了pattern,因为使用pattern会严重影响这个处理过程,变得很慢。

    执行”python process_wiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text”:

    2015-03-07 15:08:39,181: INFO: running process_enwiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text
    2015-03-07 15:11:12,860: INFO: Saved 10000 articles
    2015-03-07 15:13:25,369: INFO: Saved 20000 articles
    2015-03-07 15:15:19,771: INFO: Saved 30000 articles
    2015-03-07 15:16:58,424: INFO: Saved 40000 articles
    2015-03-07 15:18:12,374: INFO: Saved 50000 articles
    2015-03-07 15:19:03,213: INFO: Saved 60000 articles
    2015-03-07 15:19:47,656: INFO: Saved 70000 articles
    2015-03-07 15:20:29,135: INFO: Saved 80000 articles
    2015-03-07 15:22:02,365: INFO: Saved 90000 articles
    2015-03-07 15:23:40,141: INFO: Saved 100000 articles
    .....
    2015-03-07 19:33:16,549: INFO: Saved 3700000 articles
    2015-03-07 19:33:49,493: INFO: Saved 3710000 articles
    2015-03-07 19:34:23,442: INFO: Saved 3720000 articles
    2015-03-07 19:34:57,984: INFO: Saved 3730000 articles
    2015-03-07 19:35:31,976: INFO: Saved 3740000 articles
    2015-03-07 19:36:05,790: INFO: Saved 3750000 articles
    2015-03-07 19:36:32,392: INFO: finished iterating over Wikipedia corpus of 3758076 documents with 2018886604 positions (total 15271374 articles, 2075130438 positions before pruning articles shorter than 50 words)
    2015-03-07 19:36:32,394: INFO: Finished Saved 3758076 articles

    在我的macpro(4核16G机器)大约跑了4个半小时,处理了375万的文章后,我们得到了一个12G的text格式的英文维基百科数据wiki.en.text,格式类似这样的:

    anarchism is collection of movements and ideologies that hold the state to be undesirable unnecessary or harmful these movements advocate some form of stateless society instead often based on self governed voluntary institutions or non hierarchical free associations although anti statism is central to anarchism as political philosophy anarchism also entails rejection of and often hierarchical organisation in general as an anti dogmatic philosophy anarchism draws on many currents of thought and strategy anarchism does not offer fixed body of doctrine from single particular world view instead fluxing and flowing as philosophy there are many types and traditions of anarchism not all of which are mutually exclusive anarchist schools of thought can differ fundamentally supporting anything from extreme individualism to complete collectivism strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications anarchism is usually considered radical left wing ideology and much of anarchist economics and anarchist legal philosophy reflect anti authoritarian interpretations of communism collectivism syndicalism mutualism or participatory economics etymology and terminology the term anarchism is compound word composed from the word anarchy and the suffix ism themselves derived respectively from the greek anarchy from anarchos meaning one without rulers from the privative prefix ἀν an without and archos leader ruler cf archon or arkhē authority sovereignty realm magistracy and the suffix or ismos isma from the verbal infinitive suffix…

    有了这个数据后,无论用原始的word2vec binary版本还是gensim中的python word2vec版本,都可以用来训练word2vec模型,不过我们试了一下前者,发现很慢,所以还是采用google group 讨论帖中的gensim word2vec方式的训练脚本,不过做了一点修改,保留了vector text格式的输出,方便debug, 脚本train_word2vec_model.py如下:

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
     
    import logging
    import os.path
    import sys
    import multiprocessing
     
    from gensim.corpora import WikiCorpus
    from gensim.models import Word2Vec
    from gensim.models.word2vec import LineSentence
     
    if __name__ == '__main__':
        program = os.path.basename(sys.argv[0])
        logger = logging.getLogger(program)
     
        logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
        logging.root.setLevel(level=logging.INFO)
        logger.info("running %s" % ' '.join(sys.argv))
     
        # check and process input arguments
        if len(sys.argv) < 4:
            print globals()['__doc__'] % locals()
            sys.exit(1)
        inp, outp1, outp2 = sys.argv[1:4]
     
        model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5,
                workers=multiprocessing.cpu_count())
     
        # trim unneeded model memory = use(much) less RAM
        #model.init_sims(replace=True)
        model.save(outp1)
        model.save_word2vec_format(outp2, binary=False)

    执行 “python train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector”:

    2015-03-09 22:48:29,588: INFO: running train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector
    2015-03-09 22:48:29,593: INFO: collecting all words and their counts
    2015-03-09 22:48:29,607: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types
    2015-03-09 22:48:50,686: INFO: PROGRESS: at sentence #10000, processed 29353579 words and 430650 word types
    2015-03-09 22:49:08,476: INFO: PROGRESS: at sentence #20000, processed 54695775 words and 610833 word types
    2015-03-09 22:49:22,985: INFO: PROGRESS: at sentence #30000, processed 75344844 words and 742274 word types
    2015-03-09 22:49:35,607: INFO: PROGRESS: at sentence #40000, processed 93430415 words and 859131 word types
    2015-03-09 22:49:44,125: INFO: PROGRESS: at sentence #50000, processed 106057188 words and 935606 word types
    2015-03-09 22:49:49,185: INFO: PROGRESS: at sentence #60000, processed 114319016 words and 952771 word types
    2015-03-09 22:49:53,316: INFO: PROGRESS: at sentence #70000, processed 121263134 words and 969526 word types
    2015-03-09 22:49:57,268: INFO: PROGRESS: at sentence #80000, processed 127773799 words and 984130 word types
    2015-03-09 22:50:07,593: INFO: PROGRESS: at sentence #90000, processed 142688762 words and 1062932 word types
    2015-03-09 22:50:19,162: INFO: PROGRESS: at sentence #100000, processed 159550824 words and 1157644 word 
    types
    ......
    2015-03-09 23:11:52,977: INFO: PROGRESS: at sentence #3700000, processed 1999452503 words and 7990138 word types
    2015-03-09 23:11:55,367: INFO: PROGRESS: at sentence #3710000, processed 2002777270 words and 8002903 word types
    2015-03-09 23:11:57,842: INFO: PROGRESS: at sentence #3720000, processed 2006213923 words and 8019620 word types
    2015-03-09 23:12:00,439: INFO: PROGRESS: at sentence #3730000, processed 2009762733 words and 8035408 word types
    2015-03-09 23:12:02,793: INFO: PROGRESS: at sentence #3740000, processed 2013066196 words and 8045218 word types
    2015-03-09 23:12:05,178: INFO: PROGRESS: at sentence #3750000, processed 2016363087 words and 8057784 word types
    2015-03-09 23:12:07,013: INFO: collected 8069236 word types from a corpus of 2018886604 words and 3758076 sentences
    2015-03-09 23:12:12,230: INFO: total 1969354 word types after removing those with count<5
    2015-03-09 23:12:12,230: INFO: constructing a huffman tree from 1969354 words
    2015-03-09 23:14:07,415: INFO: built huffman tree with maximum node depth 29
    2015-03-09 23:14:09,790: INFO: resetting layer weights
    2015-03-09 23:15:04,506: INFO: training model with 4 workers on 1969354 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0
    2015-03-09 23:15:19,112: INFO: PROGRESS: at 0.01% words, alpha 0.02500, 19098 words/s
    2015-03-09 23:15:20,224: INFO: PROGRESS: at 0.03% words, alpha 0.02500, 37671 words/s
    2015-03-09 23:15:22,305: INFO: PROGRESS: at 0.07% words, alpha 0.02500, 75393 words/s
    2015-03-09 23:15:27,712: INFO: PROGRESS: at 0.08% words, alpha 0.02499, 65618 words/s
    2015-03-09 23:15:29,452: INFO: PROGRESS: at 0.09% words, alpha 0.02500, 70966 words/s
    2015-03-09 23:15:34,032: INFO: PROGRESS: at 0.11% words, alpha 0.02498, 77369 words/s
    2015-03-09 23:15:37,249: INFO: PROGRESS: at 0.12% words, alpha 0.02498, 74935 words/s
    2015-03-09 23:15:40,618: INFO: PROGRESS: at 0.14% words, alpha 0.02498, 75399 words/s
    2015-03-09 23:15:42,301: INFO: PROGRESS: at 0.16% words, alpha 0.02497, 86029 words/s
    2015-03-09 23:15:46,283: INFO: PROGRESS: at 0.17% words, alpha 0.02497, 83033 words/s
    2015-03-09 23:15:48,374: INFO: PROGRESS: at 0.18% words, alpha 0.02497, 83370 words/s
    2015-03-09 23:15:51,398: INFO: PROGRESS: at 0.19% words, alpha 0.02496, 82794 words/s
    2015-03-09 23:15:55,069: INFO: PROGRESS: at 0.21% words, alpha 0.02496, 83753 words/s
    2015-03-09 23:15:57,718: INFO: PROGRESS: at 0.23% words, alpha 0.02496, 85031 words/s
    2015-03-09 23:16:00,106: INFO: PROGRESS: at 0.24% words, alpha 0.02495, 86567 words/s
    2015-03-09 23:16:05,523: INFO: PROGRESS: at 0.26% words, alpha 0.02495, 84850 words/s
    2015-03-09 23:16:06,596: INFO: PROGRESS: at 0.27% words, alpha 0.02495, 87926 words/s
    2015-03-09 23:16:09,500: INFO: PROGRESS: at 0.29% words, alpha 0.02494, 88618 words/s
    2015-03-09 23:16:10,714: INFO: PROGRESS: at 0.30% words, alpha 0.02494, 91023 words/s
    2015-03-09 23:16:18,467: INFO: PROGRESS: at 0.32% words, alpha 0.02494, 85960 words/s
    2015-03-09 23:16:19,547: INFO: PROGRESS: at 0.33% words, alpha 0.02493, 89140 words/s
    2015-03-09 23:16:23,500: INFO: PROGRESS: at 0.36% words, alpha 0.02493, 92026 words/s
    2015-03-09 23:16:29,738: INFO: PROGRESS: at 0.37% words, alpha 0.02491, 88180 words/s
    2015-03-09 23:16:32,000: INFO: PROGRESS: at 0.40% words, alpha 0.02492, 92734 words/s
    2015-03-09 23:16:34,392: INFO: PROGRESS: at 0.42% words, alpha 0.02491, 93300 words/s
    2015-03-09 23:16:41,018: INFO: PROGRESS: at 0.43% words, alpha 0.02490, 89727 words/s
    .......
    2015-03-10 05:03:31,849: INFO: PROGRESS: at 99.20% words, alpha 0.00020, 95350 words/s
    2015-03-10 05:03:32,901: INFO: PROGRESS: at 99.21% words, alpha 0.00020, 95350 words/s
    2015-03-10 05:03:34,296: INFO: PROGRESS: at 99.21% words, alpha 0.00020, 95350 words/s
    2015-03-10 05:03:35,635: INFO: PROGRESS: at 99.22% words, alpha 0.00020, 95349 words/s
    2015-03-10 05:03:36,730: INFO: PROGRESS: at 99.22% words, alpha 0.00020, 95350 words/s
    2015-03-10 05:03:37,489: INFO: reached the end of input; waiting to finish 8 outstanding jobs
    2015-03-10 05:03:37,908: INFO: PROGRESS: at 99.23% words, alpha 0.00019, 95350 words/s
    2015-03-10 05:03:39,028: INFO: PROGRESS: at 99.23% words, alpha 0.00019, 95350 words/s
    2015-03-10 05:03:40,127: INFO: PROGRESS: at 99.24% words, alpha 0.00019, 95350 words/s
    2015-03-10 05:03:40,910: INFO: training on 1994415728 words took 20916.4s, 95352 words/s
    2015-03-10 05:03:41,058: INFO: saving Word2Vec object under wiki.en.text.model, separately None
    2015-03-10 05:03:41,209: INFO: not storing attribute syn0norm
    2015-03-10 05:03:41,209: INFO: storing numpy array 'syn0' to wiki.en.text.model.syn0.npy
    2015-03-10 05:04:35,199: INFO: storing numpy array 'syn1' to wiki.en.text.model.syn1.npy
    2015-03-10 05:11:25,400: INFO: storing 1969354x400 projection weights into wiki.en.text.vector

    大约跑了7个小时,我们得到了一个gensim中默认格式的word2vec model和一个原始c版本word2vec的vector格式的模型: wiki.en.text.vector,格式如下:

    1969354 400
    the 0.129255 0.015725 0.049174 -0.016438 -0.018912 0.032752 0.079885 0.033669 -0.077722 -0.025709 0.012775 0.044153 0.134307 0.070499 -0.002243 0.105198 -0.016832 -0.028631 -0.124312 -0.123064 -0.116838 0.051181 -0.096058 -0.049734 0.017380 -0.101221 0.058945 0.013669 -0.012755 0.061053 0.061813 0.083655 -0.069382 -0.069868 0.066529 -0.037156 -0.072935 -0.009470 0.037412 -0.004406 0.047011 0.005033 -0.066270 -0.031815 0.023160 -0.080117 0.172918 0.065486 -0.072161 0.062875 0.019939 -0.048380 0.198152 -0.098525 0.023434 0.079439 0.045150 -0.079479 -0.051441 -0.021556 -0.024981 -0.045291 0.040284 -0.082500 0.014618 -0.071998 0.031887 0.043916 0.115783 -0.174898 0.086603 -0.023124 0.007293 -0.066576 -0.164817 -0.081223 0.058412 0.000132 0.064160 0.055848 0.029776 -0.103420 -0.007541 -0.031742 0.082533 -0.061760 -0.038961 0.001754 -0.023977 0.069616 0.095920 0.017136 0.067126 -0.111310 0.053632 0.017633 -0.003875 -0.005236 0.063151 0.039729 -0.039158 0.001415 0.021754 -0.012540 0.015070 -0.062636 -0.013605 -0.031770 0.005296 -0.078119 -0.069303 -0.080634 -0.058377 0.024398 -0.028173 0.026353 0.088662 0.018755 -0.113538 0.055538 -0.086012 -0.027708 -0.028788 0.017759 0.029293 0.047674 -0.106734 -0.134380 0.048605 -0.089583 0.029426 0.030552 0.141916 -0.022653 0.017204 -0.036059 0.061045 -0.000077 -0.076579 0.066747 0.060884 -0.072817…
    …

    在ipython中,我们通过gensim来加载和测试这个模型,因为这个模型大约有7G,所以加载的时间也稍长一些:

    In [2]: import gensim
     
    In [3]: model = gensim.models.Word2Vec.load_word2vec_format("wiki.en.text.vector", binary=False)
     
    In [4]: model.most_similar("queen")
    Out[4]: 
    [(u'princess', 0.5760838389396667),
     (u'hyoui', 0.5671186447143555),
     (u'janggyung', 0.5598698854446411),
     (u'king', 0.5556215047836304),
     (u'dollallolla', 0.5540223121643066),
     (u'loranella', 0.5522741079330444),
     (u'ramphaiphanni', 0.5310937166213989),
     (u'jeheon', 0.5298476219177246),
     (u'soheon', 0.5243583917617798),
     (u'coronation', 0.5217245221138)]
     
    In [5]: model.most_similar("man")
    Out[5]: 
    [(u'woman', 0.7120707035064697),
     (u'girl', 0.58659827709198),
     (u'handsome', 0.5637181997299194),
     (u'boy', 0.5425317287445068),
     (u'villager', 0.5084836483001709),
     (u'mustachioed', 0.49287813901901245),
     (u'mcgucket', 0.48355430364608765),
     (u'spider', 0.4804879426956177),
     (u'policeman', 0.4780033826828003),
     (u'stranger', 0.4750771224498749)]
     
    In [6]: model.most_similar("woman")
    Out[6]: 
    [(u'man', 0.7120705842971802),
     (u'girl', 0.6736541986465454),
     (u'prostitute', 0.5765659809112549),
     (u'divorcee', 0.5429972410202026),
     (u'person', 0.5276163816452026),
     (u'schoolgirl', 0.5102938413619995),
     (u'housewife', 0.48748138546943665),
     (u'lover', 0.4858251214027405),
     (u'handsome', 0.4773051142692566),
     (u'boy', 0.47445783019065857)]
     
    In [8]: model.similarity("woman", "man")
    Out[8]: 0.71207063453821218
     
    In [10]: model.doesnt_match("breakfast cereal dinner lunch".split())
    Out[10]: 'cereal'
     
    In [11]: model.similarity("woman", "girl")
    Out[11]: 0.67365416785207421
     
    In [13]: model.most_similar("frog")
    Out[13]: 
    [(u'toad', 0.6868536472320557),
     (u'barycragus', 0.6607867479324341),
     (u'grylio', 0.626731276512146),
     (u'heckscheri', 0.6208407878875732),
     (u'clamitans', 0.6150864362716675),
     (u'coplandi', 0.612680196762085),
     (u'pseudacris', 0.6108512878417969),
     (u'litoria', 0.6084023714065552),
     (u'raniformis', 0.6044802665710449),
     (u'watjulumensis', 0.6043726205825806)]

    一切ok,但是当加载gensim默认的基于numpy格式的模型时,却遇到了问题:

    In [1]: import gensim 
     
    In [2]: model = gensim.models.Word2Vec.load("wiki.en.text.model")
     
    In [3]: model.most_similar("man")
    ... RuntimeWarning: invalid value encountered in divide
      self.syn0norm = (self.syn0 / sqrt((self.syn0 ** 2).sum(-1))[..., newaxis]).astype(REAL)
     
    Out[3]: 
    [(u'ahsns', nan),
     (u'ny\xedl', nan),
     (u'indradeo', nan),
     (u'jaimovich', nan),
     (u'addlepate', nan),
     (u'jagello', nan),
     (u'festenburg', nan),
     (u'picatic', nan),
     (u'tolosanum', nan),
     (u'mithoo', nan)]

    这也是我修改前面这个脚本的原因所在,这个脚本在训练小一些的数据,譬如前10万条text的时候没任何问题,无论原始格式还是gensim格式,但是当跑完这个英文维基百科的时候,却存在这个问题,试了一些方法解决,还没有成功,如果大家有好的建议或解决方案,欢迎提出。

    二、中文维基百科的Word2Vec测试

    测试完英文维基百科之后,自然想试试中文的维基百科数据,与英文处理过程相似,也分两个步骤,不过这里需要对中文维基百科数据特殊处理一下,包括繁简转换,中文分词,去除非utf-8字符等。中文数据的下载地址是:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2。

    中文维基百科的数据比较小,整个xml的压缩文件大约才1G,相对英文数据小了很多。首先用 process_wiki.py处理这个XML压缩文件,执行:python process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text

    2015-03-11 17:39:22,739: INFO: running process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
    2015-03-11 17:40:08,329: INFO: Saved 10000 articles
    2015-03-11 17:40:45,501: INFO: Saved 20000 articles
    2015-03-11 17:41:23,659: INFO: Saved 30000 articles
    2015-03-11 17:42:01,748: INFO: Saved 40000 articles
    2015-03-11 17:42:33,779: INFO: Saved 50000 articles
    ......
    2015-03-11 17:55:23,094: INFO: Saved 200000 articles
    2015-03-11 17:56:14,692: INFO: Saved 210000 articles
    2015-03-11 17:57:04,614: INFO: Saved 220000 articles
    2015-03-11 17:57:57,979: INFO: Saved 230000 articles
    2015-03-11 17:58:16,621: INFO: finished iterating over Wikipedia corpus of 232894 documents with 51603419 positions (total 2581444 articles, 62177405 positions before pruning articles shorter than 50 words)
    2015-03-11 17:58:16,622: INFO: Finished Saved 232894 articles

    得到了大约23万多篇中文语料的text格式的语料:wiki.zh.text,大概750多M。不过查看之后发现,除了加杂一些英文词汇外,还有很多繁体字混迹其中,这里还是参考了 @licstar 《维基百科简体中文语料的获取》中的方法,安装opencc,然后将wiki.zh.text中的繁体字转化位简体字:

    opencc -i wiki.zh.text -o wiki.zh.text.jian -c zht2zhs.ini

    然后就是分词处理了,这次我用基于MeCab训练的一套中文分词系统来进行中文分词,目前虽还没有达到实用的状态,但是性能和分词结果基本能达到这次的使用要求:

    mecab -d ../data/ -O wakati wiki.zh.text.jian -o wiki.zh.text.jian.seg -b 10000000

    注意这里data目录下是给mecab训练好的分词模型和词典文件等,详细可参考《用MeCab打造一套实用的中文分词系统》。

    有了中文维基百科的分词数据,还以为就可以执行word2vec模型训练了:

    python train_word2vec_model.py wiki.zh.text.jian.seg wiki.zh.text.model wiki.zh.text.vector

    不过仍然遇到了问题,提示的错误是:

    UnicodeDecodeError: ‘utf8′ codec can’t decode bytes in position 5394-5395: invalid continuation byte

    google了一下,大致是文件中包含非utf-8字符,又用iconv处理了一下这个问题:

    iconv -c -t UTF-8 < wiki.zh.text.jian.seg > wiki.zh.text.jian.seg.utf-8

    这样基本上就没问题了,执行:

    python train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector

    2015-03-11 18:50:02,586: INFO: running train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector
    2015-03-11 18:50:02,592: INFO: collecting all words and their counts
    2015-03-11 18:50:02,592: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types
    2015-03-11 18:50:12,476: INFO: PROGRESS: at sentence #10000, processed 12914562 words and 254662 word types
    2015-03-11 18:50:20,215: INFO: PROGRESS: at sentence #20000, processed 22308801 words and 373573 word types
    2015-03-11 18:50:28,448: INFO: PROGRESS: at sentence #30000, processed 30724902 words and 460837 word types
    ...
    2015-03-11 18:52:03,498: INFO: PROGRESS: at sentence #210000, processed 143804601 words and 1483608 word types
    2015-03-11 18:52:07,772: INFO: PROGRESS: at sentence #220000, processed 149352283 words and 1521199 word types
    2015-03-11 18:52:11,639: INFO: PROGRESS: at sentence #230000, processed 154741839 words and 1563584 word types
    2015-03-11 18:52:12,746: INFO: collected 1575172 word types from a corpus of 156430908 words and 232894 sentences
    2015-03-11 18:52:13,672: INFO: total 278291 word types after removing those with count<5
    2015-03-11 18:52:13,673: INFO: constructing a huffman tree from 278291 words
    2015-03-11 18:52:29,323: INFO: built huffman tree with maximum node depth 25
    2015-03-11 18:52:29,683: INFO: resetting layer weights
    2015-03-11 18:52:38,805: INFO: training model with 4 workers on 278291 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0
    2015-03-11 18:52:49,504: INFO: PROGRESS: at 0.10% words, alpha 0.02500, 15008 words/s
    2015-03-11 18:52:51,935: INFO: PROGRESS: at 0.38% words, alpha 0.02500, 44434 words/s
    2015-03-11 18:52:54,779: INFO: PROGRESS: at 0.56% words, alpha 0.02500, 53965 words/s
    2015-03-11 18:52:57,240: INFO: PROGRESS: at 0.62% words, alpha 0.02491, 52116 words/s
    2015-03-11 18:52:58,823: INFO: PROGRESS: at 0.72% words, alpha 0.02494, 55804 words/s
    2015-03-11 18:53:03,649: INFO: PROGRESS: at 0.94% words, alpha 0.02486, 58277 words/s
    2015-03-11 18:53:07,357: INFO: PROGRESS: at 1.03% words, alpha 0.02479, 56036 words/s
    ......
    2015-03-11 19:22:09,002: INFO: PROGRESS: at 98.38% words, alpha 0.00044, 85936 words/s
    2015-03-11 19:22:10,321: INFO: PROGRESS: at 98.50% words, alpha 0.00044, 85971 words/s
    2015-03-11 19:22:11,934: INFO: PROGRESS: at 98.55% words, alpha 0.00039, 85940 words/s
    2015-03-11 19:22:13,384: INFO: PROGRESS: at 98.65% words, alpha 0.00036, 85960 words/s
    2015-03-11 19:22:13,883: INFO: training on 152625573 words took 1775.1s, 85982 words/s
    2015-03-11 19:22:13,883: INFO: saving Word2Vec object under wiki.zh.text.model, separately None
    2015-03-11 19:22:13,884: INFO: not storing attribute syn0norm
    2015-03-11 19:22:13,884: INFO: storing numpy array 'syn0' to wiki.zh.text.model.syn0.npy
    2015-03-11 19:22:20,797: INFO: storing numpy array 'syn1' to wiki.zh.text.model.syn1.npy
    2015-03-11 19:22:40,667: INFO: storing 278291x400 projection weights into wiki.zh.text.vector

    让我们看一下训练好的中文维基百科word2vec模型“wiki.zh.text.vector”的效果:

    In [1]: import gensim
     
    In [2]: model = gensim.models.Word2Vec.load("wiki.zh.text.model")
     
    In [3]: model.most_similar(u"足球")
    Out[3]: 
    [(u'\u8054\u8d5b', 0.6553816199302673),
     (u'\u7532\u7ea7', 0.6530429720878601),
     (u'\u7bee\u7403', 0.5967546701431274),
     (u'\u4ff1\u4e50\u90e8', 0.5872289538383484),
     (u'\u4e59\u7ea7', 0.5840631723403931),
     (u'\u8db3\u7403\u961f', 0.5560152530670166),
     (u'\u4e9a\u8db3\u8054', 0.5308005809783936),
     (u'allsvenskan', 0.5249762535095215),
     (u'\u4ee3\u8868\u961f', 0.5214947462081909),
     (u'\u7532\u7ec4', 0.5177896022796631)]
     
    In [4]: result = model.most_similar(u"足球")
     
    In [5]: for e in result:
        print e[0], e[1]
       ....:     
    联赛 0.65538161993
    甲级 0.653042972088
    篮球 0.596754670143
    俱乐部 0.587228953838
    乙级 0.58406317234
    足球队 0.556015253067
    亚足联 0.530800580978
    allsvenskan 0.52497625351
    代表队 0.521494746208
    甲组 0.51778960228
     
    In [6]: result = model.most_similar(u"男人")
     
    In [7]: for e in result:
        print e[0], e[1]
       ....:     
    女人 0.77537125349
    家伙 0.617369174957
    妈妈 0.567102909088
    漂亮 0.560832381248
    잘했어 0.540875017643
    谎言 0.538448691368
    爸爸 0.53660941124
    傻瓜 0.535608053207
    예쁘다 0.535151124001
    mc刘 0.529670000076
     
    In [8]: result = model.most_similar(u"女人")
     
    In [9]: for e in result:
        print e[0], e[1]
       ....:     
    男人 0.77537125349
    我的某 0.589010596275
    妈妈 0.576344847679
    잘했어 0.562340974808
    美丽 0.555426716805
    爸爸 0.543958246708
    新娘 0.543640494347
    谎言 0.540272831917
    妞儿 0.531066179276
    老婆 0.528521537781
     
    In [10]: result = model.most_similar(u"青蛙")
     
    In [11]: for e in result:
        print e[0], e[1]
       ....:     
    老鼠 0.559612870216
    乌龟 0.489831030369
    蜥蜴 0.478990525007
    猫 0.46728849411
    鳄鱼 0.461885392666
    蟾蜍 0.448014199734
    猴子 0.436584025621
    白雪公主 0.434905380011
    蚯蚓 0.433413207531
    螃蟹 0.4314712286
     
    In [12]: result = model.most_similar(u"姨夫")
     
    In [13]: for e in result:
        print e[0], e[1]
       ....:     
    堂伯 0.583935439587
    祖父 0.574735701084
    妃所生 0.569327116013
    内弟 0.562012672424
    早卒 0.558042645454
    曕 0.553856015205
    胤祯 0.553288519382
    陈潜 0.550716996193
    愔之 0.550510883331
    叔父 0.550032019615
     
    In [14]: result = model.most_similar(u"衣服")
     
    In [15]: for e in result:
        print e[0], e[1]
       ....:     
    鞋子 0.686688780785
    穿着 0.672499775887
    衣物 0.67173999548
    大衣 0.667605519295
    裤子 0.662670075893
    内裤 0.662210345268
    裙子 0.659705817699
    西装 0.648508131504
    洋装 0.647238850594
    围裙 0.642895817757
     
    In [16]: result = model.most_similar(u"公安局")
     
    In [17]: for e in result:
        print e[0], e[1]
       ....:     
    司法局 0.730189085007
    公安厅 0.634275555611
    公安 0.612798035145
    房管局 0.597343325615
    商业局 0.597183346748
    军管会 0.59476184845
    体育局 0.59283208847
    财政局 0.588721752167
    戒毒所 0.575558543205
    新闻办 0.573395550251
     
    In [18]: result = model.most_similar(u"铁道部")
     
    In [19]: for e in result:
        print e[0], e[1]
       ....:     
    盛光祖 0.565509021282
    交通部 0.548688530922
    批复 0.546967327595
    刘志军 0.541010737419
    立项 0.517836689949
    报送 0.510296344757
    计委 0.508456230164
    水利部 0.503531932831
    国务院 0.503227233887
    经贸委 0.50156635046
     
    In [20]: result = model.most_similar(u"清华大学")
     
    In [21]: for e in result:
        print e[0], e[1]
       ....:     
    北京大学 0.763922810555
    化学系 0.724210739136
    物理系 0.694550514221
    数学系 0.684280991554
    中山大学 0.677202701569
    复旦 0.657914161682
    师范大学 0.656435549259
    哲学系 0.654701948166
    生物系 0.654403865337
    中文系 0.653147578239
     
    In [22]: result = model.most_similar(u"卫视")
     
    In [23]: for e in result:
        print e[0], e[1]
       ....:     
    湖南 0.676812887192
    中文台 0.626506924629
    収蔵 0.621356606483
    黄金档 0.582251906395
    cctv 0.536769032478
    安徽 0.536752820015
    非同凡响 0.534517168999
    唱响 0.533438682556
    最强音 0.532605051994
    金鹰 0.531676828861
     
    In [24]: result = model.most_similar(u"习近平")
     
    In [25]: for e in result:
        print e[0], e[1]
       ....:     
    胡锦涛 0.809472680092
    江泽民 0.754633367062
    李克强 0.739740967751
    贾庆林 0.737033963203
    曾庆红 0.732847094536
    吴邦国 0.726941585541
    总书记 0.719057679176
    李瑞环 0.716384887695
    温家宝 0.711952567101
    王岐山 0.703570842743
     
    In [26]: result = model.most_similar(u"林丹")
     
    In [27]: for e in result:
        print e[0], e[1]
       ....:     
    黄综翰 0.538035452366
    蒋燕皎 0.52646958828
    刘鑫 0.522252976894
    韩晶娜 0.516120731831
    王晓理 0.512289524078
    王适 0.508560419083
    杨影 0.508159279823
    陈跃 0.507353425026
    龚智超 0.503159761429
    李敬元 0.50262516737
     
    In [28]: result = model.most_similar(u"语言学")
     
    In [29]: for e in result:
        print e[0], e[1]
       ....:     
    社会学 0.632598280907
    人类学 0.623406708241
    历史学 0.618442356586
    比较文学 0.604823827744
    心理学 0.600066184998
    人文科学 0.577783346176
    社会心理学 0.575571238995
    政治学 0.574541330338
    地理学 0.573896467686
    哲学 0.573873817921
     
    In [30]: result = model.most_similar(u"计算机")
     
    In [31]: for e in result:
        print e[0], e[1]
       ....:     
    自动化 0.674171924591
    应用 0.614087462425
    自动化系 0.611132860184
    材料科学 0.607891201973
    集成电路 0.600370049477
    技术 0.597518980503
    电子学 0.591316461563
    建模 0.577238917351
    工程学 0.572855889797
    微电子 0.570086717606
     
    In [32]: model.similarity(u"计算机", u"自动化")
    Out[32]: 0.67417196002404789
     
    In [33]: model.similarity(u"女人", u"男人")
    Out[33]: 0.77537125129824813
     
    In [34]: model.doesnt_match(u"早餐 晚餐 午餐 中心".split())
    Out[34]: u'\u4e2d\u5fc3'
     
    In [35]: print model.doesnt_match(u"早餐 晚餐 午餐 中心".split())
    中心

    有好的也有坏的case,甚至bad case可能会更多一些,这和语料库的规模有关,还和分词器的效果有关等等,不过这个实验暂且就到这里了。至于word2vec有什么用,目前除了用来来计算词语相似度外,业界更关注的是word2vec在具体的应用任务中的效果,这个才是更有意思的东东,也欢迎大家一起探讨。

    注:原创文章,转载请注明出处“我爱自然语言处理”:www.52nlp.cn

    本文链接地址:http://www.52nlp.cn/中英文维基百科语料上的word2vec实验

    相关文章:

    1. 斯坦福大学深度学习与自然语言处理第二讲:词向量
    2. 如何计算两个文档的相似度(二)
    3. 微软:Web N-gram Services
    4. Beautiful Data-统计语言模型的应用三:分词7
    5. 如何计算两个文档的相似度(三)
    6. 用MeCab打造一套实用的中文分词系统(二)
    7. Coursera公开课笔记: 斯坦福大学机器学习第二课“单变量线性回归(Linear regression with one variable)”
    8. Beautiful Data-统计语言模型的应用三:分词3
    9. MIT自然语言处理第三讲:概率语言模型(第三部分)
    10. MIT自然语言处理第二讲:单词计数(第一部分)



沪ICP备19023445号-2号
友情链接