Clone an undirected graph. Each node in the graph contains a label
and a list of its neighbors
.
Nodes are labeled uniquely.
We use#
as a separator for each node, and ,
as a separator for node label and each neighbor of the node.As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
0
. Connect node 0
to both nodes 1
and 2
.1
. Connect node 1
to node 2
.2
. Connect node 2
to node 2
(itself), thus forming a self-cycle.Visually, the graph looks like the following:
1 / \ / \ 0 --- 2 / \ \_/
思路分析:这题考察图的遍历,可以考虑DFS或者BFS对图进行搜索遍历,同时进行图拷贝。下面给出了BFS基于队列的迭代实现解法。比较巧妙的是,需要用到一个HashMap来保存原来的graph的节点和新生成的graph的节点的对应关系,当在原图中BFS遍历当前节点的相邻节点时,要同时在新图对应节点的相邻节点集合中进行相应节点的添加操作。同时这个HashMap的key域还可以当成visited访问标记集合来使用,只添加没有访问过的相邻节点到队列中。每个节点访问一次,时间复杂度和空间复杂度都是O(n).
AC Code
/** * Definition for undirected graph. * class UndirectedGraphNode { * int label; * Listneighbors; * UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList (); } * }; */ public class Solution { public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) { //0923 if(node == null) return null; HashMap map = new HashMap (); //key old graph node; value new graph node UndirectedGraphNode newGraphNode = new UndirectedGraphNode(node.label); newGraphNode.neighbors = new ArrayList (); if(node.neighbors.isEmpty()) return newGraphNode; LinkedList queue = new LinkedList (); queue.add(node); map.put(node, newGraphNode); while(!queue.isEmpty()){ UndirectedGraphNode curNode = queue.poll(); for(UndirectedGraphNode nnode : curNode.neighbors){ if(!map.containsKey(nnode)){ UndirectedGraphNode copyNode = new UndirectedGraphNode(nnode.label); map.put(nnode, copyNode); queue.add(nnode); } map.get(curNode).neighbors.add(map.get(nnode)); } } return newGraphNode; } }