Given a 2D board containing 'X'
and 'O'
, capture all regions surrounded by 'X'
.
A region is captured by flipping all 'O'
s into 'X'
s in that surrounded region.
For example,
X X X X X O O X X X O X X O X X
After running your function, the board should be:
X X X X X X X X X X X X X O X X
思路分析:这题比较简单,主要考察搜索,基本的思路是搜索和边缘的O连通的那些O,用特殊字符#标记出来,然后遍历矩阵把O赋为X,把#赋值为O。而搜索与边缘的O连通的O的方法,可以用DFS或者BFS,尝试从边缘每一个O开始搜索。但是这题用DFS递归写法会超时,因为测试用例有一个很大的矩阵,会导致递归栈溢出。下面AC Code用的是BFS,借助于队列实现的迭代式的BFS。另外队列保存的是矩阵中的数的一维index,要注意换算方法。这个算法在图形学中称为Flood fill算法。时间复杂度为O(mn),空间复杂度为O(m+n)。
AC Code
public class Solution { //use bfs search(in an iterative manner with queue) public void bfs(char[][] board, int i, int j, int m, int n){ board[i][j] = '#'; //10:47 //use queue to store all the adjacent node using sequcial index LinkedListqueue = new LinkedList (); int index = i*n + j; queue.add(index); while(!queue.isEmpty()){ int cur = queue.poll(); int row = cur / n; int col = cur % n; if(row+1 < m && board[row+1][col] == 'O'){ queue.add((row+1)*n + col); board[row+1][col] = '#'; } if(row-1 >= 0 && board[row-1][col] == 'O'){ queue.add((row-1)*n + col); board[row-1][col] = '#'; } if(col+1 < n && board[row][col+1] == 'O'){ queue.add(row*n + col + 1); board[row][col+1] = '#'; } if(col-1 >= 0 && board[row][col-1] == 'O'){ queue.add(row*n + col - 1); board[row][col-1] = '#'; } } } public void solve(char[][] board) { if(board == null) return; int m = board.length; if(m <= 1) return; int n = board[0].length; for(int i = 0; i < m; i++){ if(board[i][0] == 'O'){ bfs(board, i, 0, m, n); } if(board[i][n-1] == 'O'){ bfs(board, i, n-1, m, n); } } for(int j = 0; j < n; j++){ if(board[0][j] == 'O'){ bfs(board, 0, j, m, n); } if(board[m-1][j] == 'O'){ bfs(board, m-1, j, m, n); } } for(int i = 0; i < m; i++){ for(int j = 0; j < n; j++){ if(board[i][j] == 'O'){ board[i][j] = 'X'; } else if(board[i][j] == '#'){ board[i][j] = 'O'; } } } } //Use dfs search. If the input matrix is very large, it will stack overflow //So this problem should be solved by dfs in a iterative manner(with stack) or bfs in a iterative manner(with queue) //Could not be solved by dfs in recurcive way //0951 /*public void dfs(char[][] board, int i, int j, int m, int n){ board[i][j] = '#'; if(i+1 < m && board[i+1][j] == 'O'){ dfs(board, i+1, j, m, n); } if(i-1 >= 0 && board[i-1][j] == 'O'){ dfs(board, i-1, j, m, n); } if(j+1 < n && board[i][j+1] == 'O'){ dfs(board, i, j+1, m, n); } if(j-1 >= 0 && board[i][j-1] == 'O'){ dfs(board, i, j-1, m, n); } } public void solve(char[][] board) { if(board == null) return; int m = board.length; if(m <= 1) return; int n = board[0].length; for(int i = 0; i < m; i++){ if(board[i][0] == 'O'){ dfs(board, i, 0, m, n); } if(board[i][n-1] == 'O'){ dfs(board, i, n-1, m, n); } } for(int j = 0; j < n; j++){ if(board[0][j] == 'O'){ dfs(board, 0, j, m, n); } if(board[m-1][j] == 'O'){ dfs(board, m-1, j, m, n); } } for(int i = 0; i < m; i++){ for(int j = 0; j < n; j++){ if(board[i][j] == 'O'){ board[i][j] = 'X'; } else if(board[i][j] == '#'){ board[i][j] = 'O'; } } } }*/ //10:02 }