作者:刘旭晖 Raymond 转载请注明出处
Email:colorant at 163.com
BLOG:http://blog.csdn.net/colorant/
上一篇中介绍了Spark的各种运行模式的基本流程和相关实现,这里主要分析一下各种运行模式中涉及到的一些细节问题的流程和实现
Spark的各种运行模式虽然启动方式,运行位置,调度手段有所不同,但它们所要完成的任务基本都是一致的,就是在合适的位置安全可靠的根据用户的配置和Job的需要管理和运行Task,这里粗略的列举一下在运行调度过程中各种需要考虑的问题
环境变量的传递
Spark的运行参数有很大一部分是通过环境变量来设置的,例如Executor的内存设置,Library路径等等。Local模式当然不存在环境变量的传递问题,在Cluster模式下,就需要将环境变量传递到远端JVM环境中去
SparkContext在初始化过程中 需要传递给Executor的环境变量,会在executorEnvs变量中(HashMap)中收集起来
而具体如何将这些变量设置到Executor的环境中,取决于Executor的Launch方式
在Spark Standalone模式中,这些变量被封装在org.apache.spark.deploy.Command中,交给AppClient启动远程Executor,Command经由Spark Master通过Actor再次转发给合适的Worker,Worker通过ExecutorRunner构建Java.lang.Process运行ExecutorBackend,环境变量在ExecutorRunner中传递给java.lang.ProcessBuilder.environment完成整个传递过程
在Mesos相关模式中,这些环境变量被设置到org.apache.mesos.Protos.Environment中,在通过MesosLaunch Task时交给Mesos完成分发工作
在yarn-standalone模式中,这些环境变量首先要通过Yarn Client 设置到Spark AM的运行环境中,基本就是Client类运行环境中以SPARK开头的环境变量全部设置到ContainerLaunchContext中,AM通过WorkerRunnable进一步将它们设置到运行Executor所用的ContainerLaunchContext中
Yarn-client模式与yarn-standalone模式大致相同,虽然SparkContext运行在本地,executor所需的环境变量还是通过ContainerLaunchContext经AM中转发给Executor
可以注意到,在Yarn相关模式中,并没有使用到SparkContext收集的executorEnvs,主要是因为Yarn Standalone模式下Sparkcontext本身就是在远程运行的,因此在Yarn Client中单独实现了相关代码
Jar包和各种依赖文件的分发
Spark程序的运行依赖大致分两类, 一是Spark runtime及其依赖,二是应用程序自身的额外依赖
对于Local模式而言,不存在Jar包分发的问题
对于第一类依赖
在Spark Standalone模式中,整个环境随Spark部署到各个节点中,因此也不存在runtime Jar包分发的问题
Mesos相关模式下,Mesos本身需要部署到各个节点,SparkRuntime可以和Standalone模式一样部署到各个节点中,也可以上传到Mesos可以读取的地方比如HDFS上,然后通过配置spark.executor.uri通知Mesos相关的SchedulerBackend,它们会将该URL传递给Mesos,Mesos在Launch任务时会从指定位置获取相关文件
而Spark 应用程序所额外依赖的文件,在上述模式中可以通过参数将URL传递给SparkContext,对于本地文件SparkContext将启动一个HttpServer用于其它节点读取相关文件,其它如HDFS和外部HTTP等地址上的文件则原封不动,然后这些额外依赖文件的URL在TaskSetmanager中和Task本身一起被序列化后发送给Executor,Executor再反序列化得到URL并传递给ExecutorURLClassLoader使用
在Yarn相关模式中,Runtime和程序运行所依赖的文件首先通过HDFS Client API上传到Job的.sparkStaging目录下,然后将对应的文件和URL映射关系通过containerLaunchContext.setLocalResources函数通知Yarn,Yarn的NodeManager在Launch container的时候会从指定URL处下载相关文件作为运行环境的一部分。上面的步骤对于Spark AM来说是充分的,而对于需要进一步分发到Executor的运行环境中的文件来说,AM还需要在创建Executor的Container的时候同样调用setLocalResources函数,AM是如何获得对应的文件和URL列表的呢,其实就是SparkYarn Client将这些文件的相关属性如URL,时间戳,尺寸等信息打包成字符串,通过特定的环境变量(SPARK_YARN_CACHE_XXX )传递给AM,AM再把它们从环境变量中还原成所需文件列表
Task管理和序列化
Task的运行要解决的问题不外乎就是如何以正确的顺序,有效地管理和分派任务,如何将Task及运行所需相关数据有效地发送到远端,以及收集运行结果
Task的派发源起于DAGScheduler调用TaskScheduler.submitTasks将一个Stage相关的一组Task一起提交调度。
在TaskSchedulerImpl中,这一组Task被交给一个新的TaskSetManager实例进行管理,所有的TaskSetManager经由SchedulableBuilder根据特定的调度策略进行排序,在TaskSchedulerImpl的resourceOffers函数中,当前被选择的TaskSetManager的ResourceOffer函数被调用并返回包含了序列化任务数据的TaskDescription,最后这些TaskDescription再由SchedulerBackend派发到ExecutorBackend去执行
系列化的过程中,上一节中所述App依赖文件相关属性URL等通过DataOutPutStream写出,而Task本身通过可配置的Serializer来序列化,当前可配制的Serializer包括如JavaSerializer ,KryoSerializer等
Task的运行结果在Executor端被序列化并发送回SchedulerBackend,由于受到Akka Frame Size尺寸的限制,如果运行结果数据过大,结果会存储到BlockManager中,这时候发送到SchedulerBackend的是对应数据的BlockID,TaskScheduler最终会调用TaskResultGetter在线程池中以异步的方式读取结果,TaskSetManager再根据运行结果更新任务状态(比如失败重试等)并汇报给DAGScheduler等
用户参数配置
Spark的用户参数配置途径很多,除了环境变量以外,可以通过Spark.conf文件设置,也可以通过修改系统属性设置 "spark.*"
而这些配置参数的使用环境也很多样化,有些在Sparkcontext本地使用(除了yarn-standalone模式),有些需要分发到Cluster集群中去
在SparkContext中解析和使用,比如spark.master,spark.app.names, spark.jars等等,通常用于配置SparkContext运行参数,创建Executor启动环境等
发送给Executor的参数又分两部分
一部分在ExecutorBackend初始化过程中需要使用的系统变量,会通过SparkContext在初始化过程中读取并设置到环境变量中去,在通过前面所述的方式,使用对应的底层资源调度系统设置到运行容器的环境变量中
另一部分在Executor中才使用的以"spark.*"开头的参数,则通过ExecutorBackend向SchedulerBackend的注册过程,在注册确认函数中传递给ExecutorBackend再在Executor的初始化过程中设置到SparkConf中
总体看来,这些参数配置的方式和分发途径有些不太统一,稍显混乱,大概还有改进的余地
用户及权限控制
Spark的Task在Executor中运行时,使用hadoop的UerGroupInfomation.doAs 函数将整个Task的运行环境包装起来以特定的sparkUser的身份运行。这样做的目的主要是使得Spark的task在与Hadoop交互时,使用特定的用户而不是Executor启动时所用的用户身份,这有利于在集群中区分Spark Cluster的运行用户和实际使用集群的APP用户身份,以及HDFS等权限控制
用户名在Executor中通过SPARK_USER环境变量获取
对于Local模式来说,SPARK_USER环境变量就是当前JVM环境下设定的值,当然对Local模式来说实际上也是不需要doAs的,Executor中如果SPARK_USER变量未设定或者与当前用户名一致,会跳过doAs直接执行task launch相关函数
传递用户身份的问题容易解决,比较麻烦的是身份的认证,例如将Spark运行在通过Kerberos管理权限的Hadoop集群中,这需要完成客户端的身份认证,Security 相关秘钥或Token的获取,分发,更新,失效等工作,在保证效率的同时,还要确保整个过程的安全性,目前的Spark代码对这一方面还没有完善的实现方案,但是有一些提案和Patch正在进行中。