IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    使用Numpy和Scipy处理图像

    Reverland (lhtlyy@gmail.com)发表于 2012-11-12 00:00:00
    love 0

    Image manipulation and processing using Numpy and Scipy

    翻译自:http://scipy-lectures.github.com/advanced/image_processing/index.html

    作者:Emmanuelle Gouillart, Gaël Varoquaux

    图像 = 2-D 数值数组
    
    (或者 3-D: CT, MRI, 2D + 时间; 4-D, ...)
    
    这里 图像 == Numpy数组 np.array
    

    这个教程中使用的工具:

    • numpy:基本数组操作
    • scipy:scipy.ndimage子模块致力于图像处理(n维图像)。参见http://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html

      from scipy import ndimage
      
    • 一些例子用到了使用np.array的特殊的工具箱:
      • Scikit Image
      • scikit-learn

    图像中的常见问题有:

    • 输入/输出,呈现图像
    • 基本操作:裁剪、翻转、旋转……
    • 图像滤镜:消噪,锐化
    • 图像分割:不同对应对象的像素标记

    更有力和完整的模块:

    • OpenCV (Python绑定)
    • CellProfiler
    • ITK,Python绑定
    • 更多……

    目录

    • 打开和读写图像文件
    • 呈现图像
    • 基本操作
      • 统计信息
      • 几何转换
    • 图像滤镜
      • 模糊/平滑
      • 锐化
      • 消噪
      • 数学形态学
    • 特征提取
      • 边缘检测
      • 分割
    • 测量对象属性:ndimage.measurements
    • Footnotes

    打开和读写图像文件

    将一个数组写入文件:

    In [1]: from scipy import misc
    
    In [2]: l = misc.lena()
    
    In [3]: misc.imsave('lena.png', l)  # uses the Image module (PIL)
    
    In [4]: import pylab as pl
    
    In [5]: pl.imshow(l)
    Out[5]: 
    

    从一个图像文件创建数组:

    In [7]: lena = misc.imread('lena.png')
    
    In [8]: type(lena)
    Out[8]: numpy.ndarray
    
    In [9]: lena.shape, lena.dtype
    Out[9]: ((512, 512), dtype('uint8'))
    

    8位图像(0-255)的dtype是uint8

    打开一个raw文件(相机, 3-D图像)

    In [10]: l.tofile('lena.raw')  # 创建一个raw文件
    
    In [14]: lena_from_raw = np.fromfile('lena.raw', dtype=np.int64)
    
    In [15]: lena_from_raw.shape
    Out[15]: (262144,)
    
    In [16]: lena_from_raw.shape = (512, 512)
    
    In [17]: import os
    
    In [18]: os.remove('lena.raw')
    

    需要知道图像的shape和dtype(如何区分隔数据字节)

    对于大数据,使用np.memmap进行内存映射:

    In [21]: lena_memmap = np.memmap('lena.raw', dtype=np.int64, shape=(512,512))
    

    (数据从文件读取,而不是载入内存)

    处理一个列表的图像文件:

    In [22]: for i in range(10):
       ....:     im = np.random.random_integers(0, 255, 10000).reshape((100, 100))
       ....:     misc.imsave('random_%02d.png' % i, im)
       ....:     
    
    In [23]: from glob import glob
    
    In [24]: filelist = glob('random*.png')
    
    In [25]: filelist.sort()
    

    呈现图像

    使用matplotlib和imshow将图像呈现在matplotlib图像(figure)中:

    In [29]: l = misc.lena()
    
    In [30]: import matplotlib.pyplot as plt
    
    In [31]: plt.imshow(l, cmap=plt.cm.gray)
    Out[31]: 
    

    通过设置最大最小之增加对比:

    In [33]: plt.imshow(l, cmap=plt.cm.gray, vmin=30, vmax=200)
    Out[33]: 
    
    In [34]: plt.axis('off')  # 移除axes和ticks
    Out[34]: (-0.5, 511.5, 511.5, -0.5)
    

    绘制等高线:1

    ln[7]: plt.contour(l, [60, 211])
    

    更好地观察强度变化,使用interpolate=‘nearest’:

    In [7]: plt.imshow(l[200:220, 200:220], cmap=plt.cm.gray)
    Out[7]: 
    
    In [8]: plt.imshow(l[200:220, 200:220], cmap=plt.cm.gray, interpolation='nearest')
    Out[8]: 
    

    其它包有时使用图形工具箱来可视化(GTK,Qt):2

    In [9]: import skimage.io as im_io
    
    In [21]: im_io.use_plugin('gtk', 'imshow')
    
    In [22]: im_io.imshow(l)
    

    3-D可视化:Mayavi

    参见可用Mayavi进行3-D绘图和体积数据

    • 图形平面工具
    • 等值面
    • ……

    基本操作

    图像是数组:使用整个numpy机理。

    basic

    >>> lena = misc.lena()
    >>> lena[0, 40]
    166
    >>> # Slicing
    >>> lena[10:13, 20:23]
    array([[158, 156, 157],
    [157, 155, 155],
    [157, 157, 158]])
    >>> lena[100:120] = 255
    >>>
    >>> lx, ly = lena.shape
    >>> X, Y = np.ogrid[0:lx, 0:ly]
    >>> mask = (X - lx/2)**2 + (Y - ly/2)**2 > lx*ly/4
    >>> # Masks
    >>> lena[mask] = 0
    >>> # Fancy indexing
    >>> lena[range(400), range(400)] = 255
    

    统计信息

    >>> lena = scipy.lena()
    >>> lena.mean()
    124.04678344726562
    >>> lena.max(), lena.min()
    (245, 25)
    

    np.histogram

    几何转换

    >>> lena = scipy.lena()
    >>> lx, ly = lena.shape
    >>> # Cropping
    >>> crop_lena = lena[lx/4:-lx/4, ly/4:-ly/4]
    >>> # up <-> down flip
    >>> flip_ud_lena = np.flipud(lena)
    >>> # rotation
    >>> rotate_lena = ndimage.rotate(lena, 45)
    >>> rotate_lena_noreshape = ndimage.rotate(lena, 45, reshape=False)
    

    Geometrical transformations

    示例源码

    图像滤镜

    局部滤镜:用相邻像素值的函数替代当前像素的值。

    相邻:方形(指定大小),圆形, 或者更多复杂的_结构元素_。

    模糊/平滑

    scipy.ndimage中的_高斯滤镜_:

    >>> from scipy import misc
    >>> from scipy import ndimage
    >>> lena = misc.lena()
    >>> blurred_lena = ndimage.gaussian_filter(lena, sigma=3)
    >>> very_blurred = ndimage.gaussian_filter(lena, sigma=5)
    

    均匀滤镜

    >>> local_mean = ndimage.uniform_filter(lena, size=11)
    

    示例源码

    锐化

    锐化模糊图像:

    >>> from scipy import misc
    >>> lena = misc.lena()
    >>> blurred_l = ndimage.gaussian_filter(lena, 3)
    

    通过增加拉普拉斯近似增加边缘权重:

    >>> filter_blurred_l = ndimage.gaussian_filter(blurred_l, 1)
    >>> alpha = 30
    >>> sharpened = blurred_l + alpha * (blurred_l - filter_blurred_l)
    

    sharpen

    示例源码

    消噪

    向lena增加噪声:

    >>> from scipy import misc
    >>> l = misc.lena()
    >>> l = l[230:310, 210:350]
    >>> noisy = l + 0.4*l.std()*np.random.random(l.shape)
    

    _高斯滤镜_平滑掉噪声……还有边缘:

    >>> gauss_denoised = ndimage.gaussian_filter(noisy, 2)
    

    大多局部线性各向同性滤镜都模糊图像(ndimage.uniform_filter)

    _中值滤镜_更好地保留边缘:

    >>> med_denoised = ndimage.median_filter(noisy, 3)
    

    guassian&median

    示例源码

    中值滤镜:对直边界效果更好(低曲率):

    >>> im = np.zeros((20, 20))
    >>> im[5:-5, 5:-5] = 1
    >>> im = ndimage.distance_transform_bf(im)
    >>> im_noise = im + 0.2*np.random.randn(*im.shape)
    >>> im_med = ndimage.median_filter(im_noise, 3)
    

    median

    示例源码

    其它排序滤波器:ndimage.maximum_filter,ndimage.percentile_filter

    其它局部非线性滤波器:维纳滤波器(scipy.signal.wiener)等

    非局部滤波器

    _总变差(TV)_消噪。找到新的图像让图像的总变差(正态L1梯度的积分)变得最小,当接近测量图像时:

    >>> # from skimage.filter import tv_denoise
    >>> from tv_denoise import tv_denoise
    >>> tv_denoised = tv_denoise(noisy, weight=10)
    >>> # More denoising (to the expense of fidelity to data)
    >>> tv_denoised = tv_denoise(noisy, weight=50)
    

    总变差滤镜tv_denoise可以从skimage中获得,(文档:http://scikit-image.org/docs/dev/api/skimage.filter.html#denoise-tv),但是为了方便我们在这个教程中作为一个_单独模块_导入。

    tv

    示例源码

    数学形态学

    参见:http://en.wikipedia.org/wiki/Mathematical_morphology

    结构元素:

    >>> el = ndimage.generate_binary_structure(2, 1)
    >>> el
    array([[False,  True, False],
           [ True,  True,  True],
           [False,  True, False]], dtype=bool)
    >>> el.astype(np.int)
    array([[0, 1, 0],
           [1, 1, 1],
           [0, 1, 0]])
    

    腐蚀 = 最小化滤镜。用结构元素覆盖的像素的最小值替代一个像素值:

    >>> a = np.zeros((7,7), dtype=np.int)
    >>> a[1:6, 2:5] = 1
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.binary_erosion(a).astype(a.dtype)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> #Erosion removes objects smaller than the structure
    >>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    

    erosion

    膨胀:最大化滤镜:

    >>> a = np.zeros((5, 5))
    >>> a[2, 2] = 1
    >>> a
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> ndimage.binary_dilation(a).astype(a.dtype)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    

    对灰度值图像也有效:

    >>> np.random.seed(2)
    >>> x, y = (63*np.random.random((2, 8))).astype(np.int)
    >>> im[x, y] = np.arange(8)
    
    >>> bigger_points = ndimage.grey_dilation(im, size=(5, 5), structure=np.ones((5, 5)))
    
    >>> square = np.zeros((16, 16))
    >>> square[4:-4, 4:-4] = 1
    >>> dist = ndimage.distance_transform_bf(square)
    >>> dilate_dist = ndimage.grey_dilation(dist, size=(3, 3), \
    ...         structure=np.ones((3, 3)))
    

    gray-delation

    示例源码

    开操作:腐蚀+膨胀:

    应用:移除噪声

    >>> square = np.zeros((32, 32))
    >>> square[10:-10, 10:-10] = 1
    >>> np.random.seed(2)
    >>> x, y = (32*np.random.random((2, 20))).astype(np.int)
    >>> square[x, y] = 1
    
    >>> open_square = ndimage.binary_opening(square)
    
    >>> eroded_square = ndimage.binary_erosion(square)
    >>> reconstruction = ndimage.binary_propagation(eroded_square, mask=square)
    

    application

    示例源码

    闭操作:膨胀+腐蚀

    许多其它数学分形:击中(hit)和击不中(miss)变换,tophat等等。

    特征提取

    边缘检测

    合成数据:

    >>> im = np.zeros((256, 256))
    >>> im[64:-64, 64:-64] = 1
    >>>
    >>> im = ndimage.rotate(im, 15, mode='constant')
    >>> im = ndimage.gaussian_filter(im, 8)
    

    使用_梯度操作(Sobel)_来找到搞强度的变化:

    >>> sx = ndimage.sobel(im, axis=0, mode='constant')
    >>> sy = ndimage.sobel(im, axis=1, mode='constant')
    >>> sob = np.hypot(sx, sy)
    

    sob

    示例源码

    canny滤镜

    Canny滤镜可以从skimage中获取(文档),但是为了方便我们在这个教程中作为一个_单独模块_导入:

    >>> #from skimage.filter import canny
    >>> #or use module shipped with tutorial
    >>> im += 0.1*np.random.random(im.shape)
    >>> edges = canny(im, 1, 0.4, 0.2) # not enough smoothing
    >>> edges = canny(im, 3, 0.3, 0.2) # better parameters
    

    edge

    示例源码

    需要调整几个参数……过度拟合的风险

    分割

    • 基于_直方图_的分割(没有空间信息)

        >>> n = 10
        >>> l = 256
        >>> im = np.zeros((l, l))
        >>> np.random.seed(1)
        >>> points = l*np.random.random((2, n**2))
        >>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
        >>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))
          
        >>> mask = (im > im.mean()).astype(np.float)
        >>> mask += 0.1 * im
        >>> img = mask + 0.2*np.random.randn(*mask.shape)
          
        >>> hist, bin_edges = np.histogram(img, bins=60)
        >>> bin_centers = 0.5*(bin_edges[:-1] + bin_edges[1:])
          
        >>> binary_img = img > 0.5
      

    segmente

    示例源码

    自动阈值:使用高斯混合模型:

    >>> mask = (im > im.mean()).astype(np.float)
    >>> mask += 0.1 * im
    >>> img = mask + 0.3*np.random.randn(*mask.shape)
    
    >>> from sklearn.mixture import GMM
    >>> classif = GMM(n_components=2)
    >>> classif.fit(img.reshape((img.size, 1))) 
    GMM(...)
    
    >>> classif.means_
    array([[ 0.9353155 ],
           [-0.02966039]])
    >>> np.sqrt(classif.covars_).ravel()
    array([ 0.35074631,  0.28225327])
    >>> classif.weights_
    array([ 0.40989799,  0.59010201])
    >>> threshold = np.mean(classif.means_)
    >>> binary_img = img > threshold
    

    gauss-mixture

    使用数学形态学来清理结果:

    >>> # Remove small white regions
    >>> open_img = ndimage.binary_opening(binary_img)
    >>> # Remove small black hole
    >>> close_img = ndimage.binary_closing(open_img)
    

    cleanup

    示例源码

    练习

    参看重建(reconstruction)操作(腐蚀+传播(propagation))产生比开/闭操作更好的结果:

    >>> eroded_img = ndimage.binary_erosion(binary_img)
    >>> reconstruct_img = ndimage.binary_propagation(eroded_img, mask=binary_img)
    >>> tmp = np.logical_not(reconstruct_img)
    >>> eroded_tmp = ndimage.binary_erosion(tmp)
    >>> reconstruct_final = np.logical_not(ndimage.binary_propagation(eroded_tmp, mask=tmp))
    >>> np.abs(mask - close_img).mean()
    0.014678955078125
    >>> np.abs(mask - reconstruct_final).mean()
    0.0042572021484375
    

    练习

    检查首次消噪步骤(中值滤波,总变差)如何更改直方图,并且查看是否基于直方图的分割更加精准了。

    • _基于图像_的分割:使用空间信息

        >>> from sklearn.feature_extraction import image
        >>> from sklearn.cluster import spectral_clustering
          
        >>> l = 100
        >>> x, y = np.indices((l, l))
          
        >>> center1 = (28, 24)
        >>> center2 = (40, 50)
        >>> center3 = (67, 58)
        >>> center4 = (24, 70)
        >>> radius1, radius2, radius3, radius4 = 16, 14, 15, 14
          
        >>> circle1 = (x - center1[0])**2 + (y - center1[1])**2 < radius1**2
        >>> circle2 = (x - center2[0])**2 + (y - center2[1])**2 < radius2**2
        >>> circle3 = (x - center3[0])**2 + (y - center3[1])**2 < radius3**2
        >>> circle4 = (x - center4[0])**2 + (y - center4[1])**2 < radius4**2
          
        >>> # 4 circles
        >>> img = circle1 + circle2 + circle3 + circle4
        >>> mask = img.astype(bool)
        >>> img = img.astype(float)
          
        >>> img += 1 + 0.2*np.random.randn(*img.shape)
        >>> # Convert the image into a graph with the value of the gradient on
        >>> # the edges.
        >>> graph = image.img_to_graph(img, mask=mask)
          
        >>> # Take a decreasing function of the gradient: we take it weakly
        >>> # dependant from the gradient the segmentation is close to a voronoi
        >>> graph.data = np.exp(-graph.data/graph.data.std())
          
        >>> labels = spectral_clustering(graph, k=4, mode='arpack')
        >>> label_im = -np.ones(mask.shape)
        >>> label_im[mask] = labels
      

    graph-base


    测量对象属性:ndimage.measurements

    合成数据:

    >>> n = 10
    >>> l = 256
    >>> im = np.zeros((l, l))
    >>> points = l*np.random.random((2, n**2))
    >>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    >>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))
    >>> mask = im > im.mean()
    
    • 连接成分分析

      标记连接成分:ndimage.label

        >>> label_im, nb_labels = ndimage.label(mask)
        >>> nb_labels # how many regions?
        23
        >>> plt.imshow(label_im)        
        
      

    label

    示例源码

    计算每个区域的尺寸,均值等等:

    >>> sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))
    >>> mean_vals = ndimage.sum(im, label_im, range(1, nb_labels + 1))
    

    计算小的连接成分:

    >>> mask_size = sizes < 1000
    >>> remove_pixel = mask_size[label_im]
    >>> remove_pixel.shape
    (256, 256)
    >>> label_im[remove_pixel] = 0
    >>> plt.imshow(label_im)        
    
    

    现在使用np.searchsorted重新分配标签:

    >>> labels = np.unique(label_im)
    >>> label_im = np.searchsorted(labels, label_im)
    

    reassign

    示例源码

    找到关注的封闭对象区域:3

    >>> slice_x, slice_y = ndimage.find_objects(label_im==4)[0]
    >>> roi = im[slice_x, slice_y]
    >>> plt.imshow(roi)     
    
    

    find

    示例源码

    其它空间测量:ndiamge.center_of_mass,ndimage.maximum_position等等。

    可以在分割应用限制范围之外使用。

    示例:块平均(block mean):

    m scipy import misc
    >>> l = misc.lena()
    >>> sx, sy = l.shape
    >>> X, Y = np.ogrid[0:sx, 0:sy]
    >>> regions = sy/6 * (X/4) + Y/6  # note that we use broadcasting
    >>> block_mean = ndimage.mean(l, labels=regions, index=np.arange(1,
    ...     regions.max() +1))
    >>> block_mean.shape = (sx/4, sy/6)
    

    block mean

    示例源码

    当区域不是正则的4块状时,使用stride技巧更有效(示例:fake dimensions with strides)

    非正则空间(Non-regular-spaced)区块:径向平均:

    >>> sx, sy = l.shape
    >>> X, Y = np.ogrid[0:sx, 0:sy]
    >>> r = np.hypot(X - sx/2, Y - sy/2)
    >>> rbin = (20* r/r.max()).astype(np.int)
    >>> radial_mean = ndimage.mean(l, labels=rbin, index=np.arange(1, rbin.max() +1))
    

    radial

    示例源码

    • 其它测量

    相关函数,傅里叶/小波谱等。

    一个使用数学形态学的例子:粒度(http://en.wikipedia.org/wiki/Granulometry_%28morphology%29)

    >>> def disk_structure(n):
    ...     struct = np.zeros((2 * n + 1, 2 * n + 1))
    ...     x, y = np.indices((2 * n + 1, 2 * n + 1))
    ...     mask = (x - n)**2 + (y - n)**2 <= n**2
    ...     struct[mask] = 1
    ...     return struct.astype(np.bool)
    ...
    >>>
    >>> def granulometry(data, sizes=None):
    ...     s = max(data.shape)
    ...     if sizes == None:
    ...         sizes = range(1, s/2, 2)
    ...     granulo = [ndimage.binary_opening(data, \
    ...         structure=disk_structure(n)).sum() for n in sizes]
    ...     return granulo
    ...
    >>>
    >>> np.random.seed(1)
    >>> n = 10
    >>> l = 256
    >>> im = np.zeros((l, l))
    >>> points = l*np.random.random((2, n**2))
    >>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    >>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))
    >>>
    >>> mask = im > im.mean()
    >>>
    >>> granulo = granulometry(mask, sizes=np.arange(2, 19, 4))
    

    granulometry

    示例源码

    Footnotes

    1. 占位 ↩

    2. ValueError: can not convert int64 to uint8. ↩

    3. 根据以上操作剩下的区域选择区域,因为是随机生成可能结果不通,label_im==4未必留下来了。 ↩

    4. 正则空间 ↩



沪ICP备19023445号-2号
友情链接