IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    质数求法及 a trick

    OO~发表于 2014-02-27 19:36:18
    love 0

    一般求质数方法就是判断数 n 在 sqrt(n) 中只存在因子 1,则 n 是素数。但是有时候这种求法在某些算法题目中时间占用太多,比较好的优化方法是使用筛选法。

    求 n 以内的所有质数:

    int isprime[n];
    
    memset(isprime, 1, sizeof(isprime));
    
    for(i = 4; i <= n; i += 2) {//筛掉大于2的偶数 
        isprime[i] = 0;
    }
    len = sqrt(n);
    for(i = 3; i <= len; ++i) {
        if(isprime[i] == 0) {
            continue;
        }
        step = i << i; //筛掉大于质数 i 的所有非质数
        for(j = i * i; j < n; j += step) {
            isprime[j] = 0;
        }
    }

    上述代码中 isprime[i] == 1 时,表示 i 即是一个质数。个人觉得代码中的精华应该是 step 的赋值

    step = i << i

    这两天看到的一个算法题目,恰好我看了第一眼就觉得是求质数,但是,后来总是time out,甚至 error。题目贴出来如下:

    Iahub and Iahubina went to a date at a luxury restaurant. Everything went fine until paying for the food.
     Instead of money, the waiter wants Iahub to write a Hungry sequence consisting of n integers.
    
    A sequence a1, a2, ..., an, consisting of n integers, is Hungry if and only if:
    
    1)Its elements are in increasing order. That is an inequality ai < aj holds for any two indices i, j (i < j).
    2)For any two indices i and j (i < j), aj must not be divisible by ai. 
    
    Iahub is in trouble, so he asks you for help. Find a Hungry sequence with n elements.
    
    Input
    
    The input contains a single integer: n (1 ≤ n ≤ 10^5).
    
    Output
    
    Output a line that contains n space-separated integers a1 a2, ..., an (1 ≤ ai ≤ 10^7), 
    representing a possible Hungry sequence. Note, that each ai must not be greater than 10000000 (10^7) and less than 1.
    If there are multiple solutions you can output any one.
    
    Sample test(s)
    Input
    
    3
    
    Output
    
    2 9 15

    仔细分析这个题目,其实只是一个小 trick,特别要分析上述题目中给的范围。

    (注:第 10000000 个素数是 1299743;Note:101 % 100 != 0)。



沪ICP备19023445号-2号
友情链接