IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    [原]Java程序员的Golang入门指南(下)

    dc_726发表于 2015-07-03 21:23:26
    love 0
    Java程序员的Golang入门指南(下)4.高级特性上面介绍的只是Golang的基本语法和特性,尽管像控制语句的条件不用圆括号、函数多返回值、switch-case默认break、函数闭包、集合切片等特性相比Java的确提高了开发效率,但这些在其他语言中也都有,并不是Golang能真正吸引人的地方。不仅是Golang,我们学习任何语言当然都是从基本语法特性着手,但学习时要不断地问自己:使这门语言区别于其他语言的”独到之处“在哪?这种独到之处往往反映了语言的设计思想、出发点、要解决的”痛点“,这才是一门语言或任何技术的立足之本。4.1 goroutinegoroutine使用go关键字来调用函数,也可以使用匿名函数。可以简单的把go关键字调用的函数想像成pthread_create。如果一个goroutine没有被阻塞,那么别的goroutine就不会得到执行。也就是说goroutine阻塞时,Golang会切换到其他goroutine执行,这是非常好的特性!Java对类似goroutine这种的协程没有原生支持,像Akka最害怕的就是阻塞。因为协程不等同于线程,操作系统不会帮我们完成“现场”保存和恢复,所以要实现goroutine这种特性,就要模拟操作系统的行为,保存方法或函数在协程“上下文切换”时的Context,当阻塞结束时才能正确地切换回来。像Kilim等协程库利用字节码生成,能够胜任,而Akka完全是运行时的。注意:如果你要真正的并发,需要调用runtime.GOMAXPROCS(CPU_NUM)设置。packagemainimport"fmt"funcmain() {gof("goroutine")gofunc(msgstring) { fmt.Println(msg) }("going")// Block main threadvarinputstringfmt.Scanln(&input;) fmt.Println("done") }funcf(msgstring) { fmt.Println(msg) }4.2 原子操作像Java一样,Golang支持很多CAS操作。运行结果是unsaftCnt可能小于200,因为unsafeCnt++在机器指令层面上不是一条指令,而可能是从内存加载数据到寄存器、执行自增运算、保存寄存器中计算结果到内存这三部分,所以不进行保护的话有些更新是会丢失的。packagemainimport("fmt""time""sync/atomic""runtime")funcmain() {// IMPORTANT!!!runtime.GOMAXPROCS(4)// thread-unsafevarunsafeCntint32=0fori :=0; i <10; i++ {gofunc() {fori :=0; i <20; i++ { time.Sleep(time.Millisecond) unsafeCnt++ } }() } time.Sleep(time.Second) fmt.Println("cnt: ", unsafeCnt)// CAS toolkitvarcntint32=0fori :=0; i <10; i++ {gofunc() {fori :=0; i <20; i++ { time.Sleep(time.Millisecond) atomic.AddInt32(&cnt;,1) } }() } time.Sleep(time.Second) cntFinal := atomic.LoadInt32(&cnt;) fmt.Println("cnt: ", cntFinal) }神奇CAS的原理Golang的AddInt32()类似于Java中AtomicInteger.incrementAndGet(),其伪代码可以表示如下。二者的基本思想是一致的,本质上是乐观锁:首先,从内存位置M加载要修改的数据到寄存器A中;然后,修改数据并保存到另一寄存器B;最终,利用CPU提供的CAS指令(Java通过JNI调用到)用一条指令完成:1)A值与M处的原值比较;2)若相同则将B值覆盖到M处。若不相同,则CAS指令会失败,说明从内存加载到执行CAS指令这一小段时间内,发生了上下文切换,执行了其他线程的代码修改了M处的变量值。那么重新执行前面几个步骤再次尝试。ABA问题:即另一线程修改了M位置的数据,但是从原值改为C,又从C改回原值。这样上下文切换回来,CAS指令发现M处的值“未改变”(实际是改了两次,最后改回来了),所以CAS指令正常执行,不会失败。这种问题在Java中可以用AtomicStampedReference/AtomicMarkableReference解决。publicfinalintincrementAndGet() {for(;;) {intcurrent = get();intnext = current +1;if(compareAndSet(current, next))returnnext; } }4.3 Channel管道通过前面可以看到,尽管goroutine很方便很高效,但如果滥用的话很可能会导致并发安全问题。而Channel就是用来解决这个问题的,它是goroutine之间通信的桥梁,类似Actor模型中每个Actor的mailbox。多个goroutine要修改一个状态时,可以将请求都发送到一个Channel里,然后由一个goroutine负责顺序地修改状态。Channel默认是阻塞的,也就是说select时如果没有事件,那么当前goroutine会发生读阻塞。同理,Channel是有大小的,当Channel满了时,发送方会发生写阻塞。Channel这种阻塞的特性加上goroutine可以很容易就能实现生产者-消费者模式。用case可以给Channel设置阻塞的超时时间,避免一直阻塞。而default则使select进入无阻塞模式。packagemainimport("fmt""time")/** * Output: * received message: hello * received message: world * * received from channel-1: Hello * received from channel-2: World * * received message: hello * Time out! * * Nothing received! * received message: hello * Nothing received! * Nothing received! * Nothing received! * Nothing received! * Nothing received! * Nothing received! * Nothing received! * Nothing received! * Nothing received! * received message: world * Nothing received! * Nothing received! * Nothing received! */funcmain() { listenOnChannel() selectTwoChannels() blockChannelWithTimeout() unblockChannel() }funclistenOnChannel() {// Specify channel type and buffer sizechannel :=make(chanstring,5)gofunc() { channel <-"hello"channel <-"world"}()fori :=0; i <2; i++ { msg := <- channel fmt.Println("received message: "+ msg) } }funcselectTwoChannels() { c1 :=make(chanstring) c2 :=make(chanstring)gofunc() { time.Sleep(time.Second) c1 <-"Hello"}()gofunc() { time.Sleep(time.Second) c2 <-"World"}()fori :=0; i <2; i++ {select{casemsg1 := <- c1: fmt.Println("received from channel-1: "+ msg1)casemsg2 := <- c2: fmt.Println("received from channel-2: "+ msg2) } } }funcblockChannelWithTimeout() { channel :=make(chanstring,5)gofunc() { channel <-"hello"// Sleep 10 sectime.Sleep(time.Second *10) channel <-"world"}()fori :=0; i <2; i++ {select{casemsg := <- channel: fmt.Println("received message: "+ msg)// Set timeout 5 seccase<- time.After(time.Second *5): fmt.Println("Time out!") } } }funcunblockChannel() { channel :=make(chanstring,5)gofunc() { channel <-"hello"time.Sleep(time.Second *10) channel <-"world"}()fori :=0; i <15; i++ {select{casemsg := <- channel: fmt.Println("received message: "+ msg)default: fmt.Println("Nothing received!") time.Sleep(time.Second) } } }4.4 缓冲流Golang的bufio包提供了方便的缓冲流操作,通过strings或网络IO得到流后,用bufio.NewReader/Writer()包装:缓冲区:Peek()或Read时,数据会从底层进入到缓冲区。缓冲区默认大小为4096字节。切片和拷贝:Peek()和ReadSlice()得到的都是切片(缓冲区数据的引用)而不是拷贝,所以更加节约空间。但是当缓冲区数据变化时,切片也会随之变化。而ReadBytes/String()得到的都是数据的拷贝,可以放心使用。Unicode支持:ReadRune()可以直接读取Unicode字符。有意思的是Golang中Unicode字符也要用单引号,这点与Java不同。分隔符:ReadSlice/Bytes/String()得到的包含分隔符,bufio不会自动去掉。Writer:对应地,Writer提供了WriteBytes/String/Rune。undo方法:可以将读出的字节再放回到缓冲区,就像什么都没发生一样。packagemainimport("fmt""strings""bytes""bufio")/** * Buffered: 0 * Buffered after peek: 7 * ABCDE * AxCDE * * abcdefghijklmnopqrst 20 * uvwxyz1234567890 16 * 0 EOF * * "ABC " * "DEF " * "GHI" * * "ABC " * "DEF " * "GHI" * * read unicode=[你], size=[3] * read unicode=[好], size=[3] * read(after undo) unicode=[好], size=[3] * * Available: 4096 * Buffered: 0 * Available after write: 4088 * Buffered after write: 8 * Buffer after write: "" * Available after flush: 4096 * Buffered after flush: 0 * Buffer after flush: "ABCDEFGH" * * Hello,世界! */funcmain() { testPeek() testRead() testReadSlice() testReadBytes() testReadUnicode() testWrite() testWriteByte() }functestPeek() { r := strings.NewReader("ABCDEFG") br := bufio.NewReader(r) fmt.Printf("Buffered: %d\n", br.Buffered()) p, _ := br.Peek(5) fmt.Printf("Buffered after peek: %d\n", br.Buffered()) fmt.Printf("%s\n", p) p[1] ='x'p, _ = br.Peek(5) fmt.Printf("%s\n", p) }functestRead() { r := strings.NewReader("abcdefghijklmnopqrstuvwxyz1234567890") br := bufio.NewReader(r) b :=make([]byte,20) n, err := br.Read(b) fmt.Printf("%-20s %-2v %v\n", b[:n], n, err) n, err = br.Read(b) fmt.Printf("%-20s %-2v %v\n", b[:n], n, err) n, err = br.Read(b) fmt.Printf("%-20s %-2v %v\n", b[:n], n, err) }functestReadSlice() { r := strings.NewReader("ABC DEF GHI") br := bufio.NewReader(r) w, _ := br.ReadSlice(' ') fmt.Printf("%q\n", w) w, _ = br.ReadSlice(' ') fmt.Printf("%q\n", w) w, _ = br.ReadSlice(' ') fmt.Printf("%q\n", w) }functestReadBytes() { r := strings.NewReader("ABC DEF GHI") br := bufio.NewReader(r) w, _ := br.ReadBytes(' ') fmt.Printf("%q\n", w) w, _ = br.ReadSlice(' ') fmt.Printf("%q\n", w) s, _ := br.ReadString(' ') fmt.Printf("%q\n", s) }functestReadUnicode() { r := strings.NewReader("你好,世界!") br := bufio.NewReader(r) c, size, _ := br.ReadRune() fmt.Printf("read unicode=[%c], size=[%v]\n", c, size) c, size, _ = br.ReadRune() fmt.Printf("read unicode=[%c], size=[%v]\n", c, size) br.UnreadRune() c, size, _ = br.ReadRune() fmt.Printf("read(after undo) unicode=[%c], size=[%v]\n", c, size) }functestWrite() { b := bytes.NewBuffer(make([]byte,0)) bw := bufio.NewWriter(b) fmt.Printf("Available: %d\n", bw.Available()) fmt.Printf("Buffered: %d\n", bw.Buffered()) bw.WriteString("ABCDEFGH") fmt.Printf("Available after write: %d\n", bw.Available()) fmt.Printf("Buffered after write: %d\n", bw.Buffered()) fmt.Printf("Buffer after write: %q\n", b) bw.Flush() fmt.Printf("Available after flush: %d\n", bw.Available()) fmt.Printf("Buffered after flush: %d\n", bw.Buffered()) fmt.Printf("Buffer after flush: %q\n", b) }functestWriteByte() { b := bytes.NewBuffer(make([]byte,0)) bw := bufio.NewWriter(b) bw.WriteByte('H') bw.WriteByte('e') bw.WriteByte('l') bw.WriteByte('l') bw.WriteByte('o') bw.WriteString(",") bw.WriteRune('世') bw.WriteRune('界') bw.WriteRune('!') bw.Flush() fmt.Println(b) }4.5 并发控制sync包中的WaitGroup是个很有用的类,类似信号量。wg.Add()和Done()能够加减WaitGroup(信号量)的值,而Wait()会挂起当前线程直到信号量变为0。下面的例子用WaitGroup的值表示正在运行的goroutine数量。在goroutine中,用defer Done()确保goroutine正常或异常退出时,WaitGroup都能减一。packagemainimport("fmt""sync")/** * I'm waiting all goroutines on wg done * I'm done=[0] * I'm done=[1] * I'm done=[2] * I'm done=[3] * I'm done=[4] * I'm done=[5] * I'm done=[6] * I'm done=[7] * I'm done=[8] * I'm done=[9] */funcmain() {varwg sync.WaitGroupfori :=0; i <10; i++ { wg.Add(1)gofunc(idint) {deferwg.Done() fmt.Printf("I'm done=[%d]\n", id) }(i) } fmt.Println("I'm waiting all goroutines on wg done") wg.Wait() }4.6 网络编程Golang的net包的抽象层次还是挺高的,用不了几行代码就能实现一个简单的TCP或HTTP服务端了。4.6.1 Socket编程packagemainimport("net""fmt""io")/** * Starting the server * Accept the connection: 127.0.0.1:14071 * Warning: End of data EOF */funcmain() { listener, err := net.Listen("tcp","127.0.0.1:12345")iferr !=nil{panic("error listen: "+ err.Error()) } fmt.Println("Starting the server")for{ conn, err := listener.Accept()iferr !=nil{panic("error accept: "+ err.Error()) } fmt.Println("Accept the connection: ", conn.RemoteAddr())goechoServer(conn) } }funcechoServer(conn net.Conn) { buf :=make([]byte,1024)deferconn.Close()for{ n, err := conn.Read(buf)switcherr {casenil: conn.Write(buf[0:n])caseio.EOF: fmt.Printf("Warning: End of data %s\n", err)returndefault: fmt.Printf("Error: read data %s\n", err)return} } }4.6.2 Http服务器packagemainimport("fmt""log""net/http")funcmain() { http.HandleFunc("/hello", handleHello) fmt.Println("serving on http://localhost:7777/hello") log.Fatal(http.ListenAndServe("localhost:7777",nil)) }funchandleHello(w http.ResponseWriter, req *http.Request) { log.Println("serving", req.URL) fmt.Fprintln(w,"Hello, world!") }5.结束语5.1 Golang初体验Golang的某些语法的确很简洁,像行尾无分号、条件语句无括号、类型推断、函数多返回值、异常处理、原生协程支持、DuckType继承等,尽管很多并不是Golang首创,但结合到一起写起来还是很舒服的。当然Golang也有让人“不爽”的地方。像变量和函数中的类型声明写在后面简直是“反人类”!同样是颠覆,switch的case默认会break就很实用。另外,因为Golang主要还是想替代C做系统开发,所以像类啊、包啊还是能看到C的影子,例如类声明只有成员变量而不会包含方法实现等,支持全局函数等,所以有时看到aaa.bbb()还是有点迷糊,不知道aaa是包名还是实例名。5.2 如何学习一门语言当我们谈到学习英语时,想到的可能是背单词、学语法、练习听说读写。对于编程语言来说,背单词(关键字)、学语法(语法规则)少不了,可听说读写只剩下了“写”,因为我们说话的对象是“冷冰冰”的计算机。所以唯一的捷径就是“写”,不断地练习!此外,学的语言多了也能总结出一些规律。首先是基础语法,包括了变量和常量、控制语句、函数、集合、OOP、异常处理、控制台输入输出、包管理等。然后是高级特性就差别比较大了。专注高并发的语言就要看并发方面的特性,专注OOP的语言就要看有哪些抽象层次更高的特性等等。还是那句话,基础语言只能说我们会用,而能够区别一门语言的高级特性才是它的根本和灵魂,也是我们要着重学习和领悟的地方。


沪ICP备19023445号-2号
友情链接