前几天很简单地跑了一个DirectX 9 程序,以为DirectX就那么绘制,事实证明有点Naive了。
之前的那个程序最多也就是个固定流水线的东西。但是今天要用DirectX11来写一个小的框架。
ID3D11Device : 一个虚拟适配器;它被用于运行渲染和创建资源。
ID3D11DeviceContext: represents a device context which generates rendering commands.
ID3D11RenderTargetView: identifies the render-target subresources that can be accessed during rendering.
ID3D11InputLayout: An input-layout interface holds a definition of how to feed vertex data that is laid out in memory into the input-assembler stage of the graphics pipeline.
DirectX编程流水线是为了实时游戏应用设计的,上图显示了由输入到输出的各个阶段的数据流向。相对于DirectX10 的图形流水线,DirectX11添加了一些额外的Stage来支持一些新的特性。
你可以使用DirectX 11API来配置所有的Stage,通过HLSL语言来设置就可以了,这样整个流水线就拥有非常大的可扩展性和适应性了。下面列出每个阶段所做的事情.
Input-Assembler Stage : 提供渲染时的数据(三角形,线,点);
Vertex-Shader Stage:处理顶点,通常的操作有:Transformmation,蒙皮,光照计算。通常一个VertexShader输入是一组顶点,输出也是一组顶点。
Geometry-Shader Statge:这个阶段会处理所有的图元,输入是完整的图元(三角形就是三个顶点,线段就是两个顶点,还有就是单个的点)。另外,每个图元可以包含邻接图元的信息。另外这个阶段还可以对图元进行一定的简化和精细化。给定一个图元,geometry shader可以丢弃这个图元,或者可以生成新的一个或者多个的图元。
Stream-Output Stage: 从上一个阶段流下来的数据,可以将图元信息从流水线放入到存储中,或者放到Rasterizer阶段。被放到内存中的数据可以再次放到流水线中,或者被CPU读取。
Rasterizer Stage:裁剪图元,为pixel shader准备图元,并准备怎样调用pixel shader.
Pixel-Shader Stage: 收到经过插值的结果,生成最终的图像。
Output-Merger Stage :合并各种类型的输出信息(pixel shader 值,深度信息,Stencil值),并和当前render target的深度/Stencil 缓存,得到最后的流水线结果。
Tessellation stage:这个阶段由Hull-shader, tessellator还有domain-shader组成,它主要是将高阶表面转换成一系列的三角行,然后放到流水线中。
Direct3D 11 可编程流水线也可以用高速的计算任务,一个compute shader可以将Direct3D11扩展用于通用GPU计算。
Direct3D,我们需要完成以下几个步骤:
1.定义我们需要检查的设备类型(device types)和特征级别(feature levels)
2.创建Direct3D设备,渲染设备(context)和交换链(swap chain)。
3.创建渲染目标(render target)。
4.设置视口(viewport)
5.开始渲染
6.渲染模型
7.清屏幕
代码清单
// include the basic windows header files and the Direct3D header files #include <windows.h> #include <windowsx.h> #include <d3d11.h> #include <d3dx11.h> #include <d3dx10.h> #include "assimpmodel.h" // include the Direct3D Library file #pragma comment (lib, "d3d11.lib") #pragma comment (lib, "d3dx11.lib") #pragma comment (lib, "d3dx10.lib") // define the screen resolution #define SCREEN_WIDTH 800 #define SCREEN_HEIGHT 600 // global declarations IDXGISwapChain *swapchain; // the pointer to the swap chain interface ID3D11Device *dev; // the pointer to our Direct3D device interface ID3D11DeviceContext *devcon; // the pointer to our Direct3D device context ID3D11RenderTargetView *backbuffer; // the pointer to our back buffer ID3D11InputLayout *pLayout; // the pointer to the input layout ID3D11VertexShader *pVS; // the pointer to the vertex shader ID3D11PixelShader *pPS; // the pointer to the pixel shader ID3D11Buffer *pVBuffer; // the pointer to the vertex buffer // a struct to define a single vertex struct VERTEX{ D3DXVECTOR3 position; D3DXCOLOR Color; }; // function prototypes void InitD3D(HWND hWnd); // sets up and initializes Direct3D void RenderFrame(void); // renders a single frame void CleanD3D(void); // closes Direct3D and releases memory void InitGraphics(void); // creates the shape to render void InitPipeline(void); // loads and prepares the shaders // the WindowProc function prototype LRESULT CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam); // the entry point for any Windows program int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) { HWND hWnd; WNDCLASSEX wc; ZeroMemory(&wc, sizeof(WNDCLASSEX)); wc.cbSize = sizeof(WNDCLASSEX); wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = WindowProc; wc.hInstance = hInstance; wc.hCursor = LoadCursor(NULL, IDC_ARROW); wc.lpszClassName = "WindowClass"; RegisterClassEx(&wc); RECT wr = { 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT }; AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE); hWnd = CreateWindowEx(NULL, "WindowClass", "Triangle", WS_OVERLAPPEDWINDOW, 300, 300, wr.right - wr.left, wr.bottom - wr.top, NULL, NULL, hInstance, NULL); ShowWindow(hWnd, nCmdShow); // set up and initialize Direct3D InitD3D(hWnd); // enter the main loop: MSG msg; while (TRUE) { if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { TranslateMessage(&msg); DispatchMessage(&msg); if (msg.message == WM_QUIT) break; } RenderFrame(); } // clean up DirectX and COM CleanD3D(); return msg.wParam; } // this is the main message handler for the program LRESULT CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) { switch (message) { case WM_DESTROY: { PostQuitMessage(0); return 0; } break; } return DefWindowProc(hWnd, message, wParam, lParam); } // this function initializes and prepares Direct3D for use void InitD3D(HWND hWnd) { // create a struct to hold information about the swap chain DXGI_SWAP_CHAIN_DESC scd; // clear out the struct for use ZeroMemory(&scd, sizeof(DXGI_SWAP_CHAIN_DESC)); // fill the swap chain description struct scd.BufferCount = 1; // one back buffer scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // use 32-bit color scd.BufferDesc.Width = SCREEN_WIDTH; // set the back buffer width scd.BufferDesc.Height = SCREEN_HEIGHT; // set the back buffer height scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // how swap chain is to be used scd.OutputWindow = hWnd; // the window to be used scd.SampleDesc.Count = 4; // how many multisamples scd.Windowed = TRUE; // windowed/full-screen mode scd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; // allow full-screen switching // create a device, device context and swap chain using the information in the scd struct D3D11CreateDeviceAndSwapChain(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, NULL, NULL, NULL, D3D11_SDK_VERSION, &scd, &swapchain, &dev, NULL, &devcon); // get the address of the back buffer ID3D11Texture2D *pBackBuffer; swapchain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&pBackBuffer); // use the back buffer address to create the render target dev->CreateRenderTargetView(pBackBuffer, NULL, &backbuffer); pBackBuffer->Release(); // set the render target as the back buffer devcon->OMSetRenderTargets(1, &backbuffer, NULL); // Set the viewport D3D11_VIEWPORT viewport; ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT)); viewport.TopLeftX = 0; viewport.TopLeftY = 0; viewport.Width = SCREEN_WIDTH; viewport.Height = SCREEN_HEIGHT; devcon->RSSetViewports(1, &viewport); InitPipeline(); InitGraphics(); } // this is the function used to render a single frame void RenderFrame(void) { // clear the back buffer to a deep blue devcon->ClearRenderTargetView(backbuffer, D3DXCOLOR(0.0f, 0.2f, 0.4f, 1.0f)); // select which vertex buffer to display UINT stride = sizeof(VERTEX); UINT offset = 0; devcon->IASetVertexBuffers(0, 1, &pVBuffer, &stride, &offset); // select which primtive type we are using devcon->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // draw the vertex buffer to the back buffer devcon->Draw(3, 0); // switch the back buffer and the front buffer swapchain->Present(0, 0); } // this is the function that cleans up Direct3D and COM void CleanD3D(void) { swapchain->SetFullscreenState(FALSE, NULL); // switch to windowed mode // close and release all existing COM objects pLayout->Release(); pVS->Release(); pPS->Release(); pVBuffer->Release(); swapchain->Release(); backbuffer->Release(); dev->Release(); devcon->Release(); } // this is the function that creates the shape to render void InitGraphics() { //Assimpmodel *model = new Assimpmodel(); //model->Initialize(dev); // create a triangle using the VERTEX struct VERTEX OurVertices[] = { { D3DXVECTOR3(0.0f, 0.5f, 0.0f), D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f) }, { D3DXVECTOR3(0.45f, -0.5, 0.0f), D3DXCOLOR(0.0f, 1.0f, 0.0f, 1.0f) }, { D3DXVECTOR3(-0.45f, -0.5f, 0.0f), D3DXCOLOR(0.0f, 0.0f, 1.0f, 1.0f) } }; // create the vertex buffer D3D11_BUFFER_DESC bd; ZeroMemory(&bd, sizeof(bd)); bd.Usage = D3D11_USAGE_DYNAMIC; // write access access by CPU and GPU bd.ByteWidth = sizeof(VERTEX)* 3; // size is the VERTEX struct * 3 bd.BindFlags = D3D11_BIND_VERTEX_BUFFER; // use as a vertex buffer bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; // allow CPU to write in buffer dev->CreateBuffer(&bd, NULL, &pVBuffer); // create the buffer // copy the vertices into the buffer D3D11_MAPPED_SUBRESOURCE ms; devcon->Map(pVBuffer, NULL, D3D11_MAP_WRITE_DISCARD, NULL, &ms); // map the buffer memcpy(ms.pData, OurVertices, sizeof(OurVertices)); // copy the data devcon->Unmap(pVBuffer, NULL); // unmap the buffer } // this function loads and prepares the shaders void InitPipeline() { // load and compile the two shaders ID3D10Blob *VS, *PS; D3DX11CompileFromFile("shaders.shader", 0, 0, "VShader", "vs_5_0", 0, 0, 0, &VS, 0, 0); D3DX11CompileFromFile("shaders.shader", 0, 0, "PShader", "ps_5_0", 0, 0, 0, &PS, 0, 0); // encapsulate both shaders into shader objects dev->CreateVertexShader(VS->GetBufferPointer(), VS->GetBufferSize(), NULL, &pVS); dev->CreatePixelShader(PS->GetBufferPointer(), PS->GetBufferSize(), NULL, &pPS); // set the shader objects devcon->VSSetShader(pVS, 0, 0); devcon->PSSetShader(pPS, 0, 0); // create the input layout object D3D11_INPUT_ELEMENT_DESC ied[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; dev->CreateInputLayout(ied, 2, VS->GetBufferPointer(), VS->GetBufferSize(), &pLayout); devcon->IASetInputLayout(pLayout); }
shader.shader
struct VOut { float4 position : SV_POSITION; float4 color : COLOR; }; VOut VShader(float4 position : POSITION, float4 color : COLOR) { VOut output; output.position = position; output.color = color; return output; } float4 PShader(float4 position : SV_POSITION, float4 color : COLOR) : SV_TARGET { return color; }
结果如下
将所有的代码都写在main.cpp里肯定不是太好,最好按功能抽象出各种类型。下面是参照教程写的一个框架。
简单的一个框架,还是渲染一个小小的三角形,但是是抽了很多个类出来,比如相机,输入之类的,方面后面扩展。
当然还是一个比较槽的框架哈。
代码直接看github吧。
Graphics Pipeline - https://msdn.microsoft.com/en-us/library/windows/desktop/ff476882(v=vs.85).aspx
《Introduction to 3D GAME PROGRAMMING WITH DIRECTX®11》
DirectX 11 Tutorials - http://www.rastertek.com/tutdx11.html
http://www.directxtutorial.com/default.aspx