Metrics,谷歌翻译就是度量的意思。当我们需要为某个系统某个服务做监控、做统计,就需要用到Metrics。
举个栗子,一个图片压缩服务:
又或者一个缓存服务:
基本上每一个服务、应用都需要做一个监控系统,这需要尽量以少量的代码,实现统计某类数据的功能。
以 Java 为例,目前最为流行的 metrics 库是来自 Coda Hale 的 dropwizard/metrics,该库被广泛地应用于各个知名的开源项目中。例如 Hadoop,Kafka,Spark,JStorm 中。
本文就结合范例来主要介绍下 dropwizard/metrics 的概念和用法。
我们需要在pom.xml
中依赖 metrics-core
包:<dependencies>
<dependency>
<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-core</artifactId>
<version>${metrics.version}</version>
</dependency>
</dependencies>
注:在POM文件中需要声明 ${metrics.version}
的具体版本号,如 3.1.0
MetricRegistry
类是Metrics的核心,它是存放应用中所有metrics的容器。也是我们使用 Metrics 库的起点。
MetricRegistry registry = new MetricRegistry(); |
每一个 metric 都有它独一无二的名字,Metrics 中使用句点名字,如 com.example.Queue.size。当你在 com.example.Queue 下有两个 metric 实例,可以指定地更具体:com.example.Queue.requests.size 和 com.example.Queue.response.size 。使用MetricRegistry
类,可以非常方便地生成名字。
MetricRegistry.name(Queue.class, "requests", "size") |
Metircs 提供了 Report 接口,用于展示 metrics 获取到的统计数据。metrics-core
中主要实现了四种 reporter: JMX, console, SLF4J, 和 CSV。 在本文的例子中,我们使用 ConsoleReporter 。
最简单的度量指标,只有一个简单的返回值,例如,我们想衡量一个待处理队列中任务的个数,代码如下:public class GaugeTest {
public static Queue<String> q = new LinkedList<String>();
public static void main(String[] args) throws InterruptedException {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
registry.register(MetricRegistry.name(GaugeTest.class, "queue", "size"),
new Gauge<Integer>() {
public Integer getValue() {
return q.size();
}
});
while(true){
Thread.sleep(1000);
q.add("Job-xxx");
}
}
}
运行之后的结果如下:-- Gauges ------------------------------------------------
com.alibaba.wuchong.metrics.GaugeTest.queue.size
value = 6
其中第7行和第8行添加了ConsoleReporter,可以每秒钟将度量指标打印在屏幕上,理解起来会更清楚。
但是对于大多数队列数据结构,我们并不想简单地返回queue.size()
,因为java.util
和java.util.concurrent
中实现的#size()
方法都是 O(n) 的复杂度,这会影响 Gauge 的性能。
Counter 就是计数器,Counter 只是用 Gauge 封装了 AtomicLong
。我们可以使用如下的方法,使得获得队列大小更加高效。
public class CounterTest { |
运行之后的结果大致如下:add job : Job-15
add job : Job-16
take job : Job-8
take job : Job-10
add job : Job-19
15-8-1 16:11:31 ============================================
-- Counters ----------------------------------------------
java.util.Queue.pending-jobs.size
count = 5
Meter度量一系列事件发生的速率(rate),例如TPS。Meters会统计最近1分钟,5分钟,15分钟,还有全部时间的速率。
public class MeterTest { |
运行结果大致如下:request
15-8-1 16:23:25 ============================================
-- Meters ------------------------------------------------
com.alibaba.wuchong.metrics.MeterTest.request.tps
count = 134
mean rate = 2.13 events/second
1-minute rate = 2.52 events/second
5-minute rate = 3.16 events/second
15-minute rate = 3.32 events/second
注:非常像 Unix 系统中 uptime 和 top 中的 load。
Histogram统计数据的分布情况。比如最小值,最大值,中间值,还有中位数,75百分位, 90百分位, 95百分位, 98百分位, 99百分位, 和 99.9百分位的值(percentiles)。
比如request的大小的分布:public class HistogramTest {
public static Random random = new Random();
public static void main(String[] args) throws InterruptedException {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
Histogram histogram = new Histogram(new ExponentiallyDecayingReservoir());
registry.register(MetricRegistry.name(HistogramTest.class, "request", "histogram"), histogram);
while(true){
Thread.sleep(1000);
histogram.update(random.nextInt(100000));
}
}
}
运行之后结果大致如下:-- Histograms --------------------------------------------
java.util.Queue.queue.histogram
count = 56
min = 1122
max = 99650
mean = 48735.12
stddev = 28609.02
median = 49493.00
75% <= 72323.00
95% <= 90773.00
98% <= 94011.00
99% <= 99650.00
99.9% <= 99650.00
Timer其实是 Histogram 和 Meter 的结合, histogram 某部分代码/调用的耗时, meter统计TPS。
public class TimerTest { |
运行之后结果如下:-- Timers ------------------------------------------------
com.alibaba.wuchong.metrics.TimerTest.get-latency
count = 38
mean rate = 1.90 calls/second
1-minute rate = 1.66 calls/second
5-minute rate = 1.61 calls/second
15-minute rate = 1.60 calls/second
min = 13.90 milliseconds
max = 988.71 milliseconds
mean = 519.21 milliseconds
stddev = 286.23 milliseconds
median = 553.84 milliseconds
75% <= 763.64 milliseconds
95% <= 943.27 milliseconds
98% <= 988.71 milliseconds
99% <= 988.71 milliseconds
99.9% <= 988.71 milliseconds
初次之外,Metrics还提供了 HealthCheck 用来检测某个某个系统是否健康,例如数据库连接是否正常。还有Metrics Annotation,可以很方便地实现统计某个方法,某个值的数据。感兴趣的可以点进链接看看。
本文代码已上传至GitHub。