Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
避免重复
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
if(!nums.size()){
return res;
}
sort(nums.begin(), nums.end());
auto begin = nums.begin();
auto last = nums.end();
for(auto i=begin; i<prev(last,2) && *i<=0; i++){
if(i!=begin && *i==*(i-1)){
continue;
}
auto j=i+1;
auto k=last-1;
while(j<k){
auto t = *i+*j+*k;
if(t==0){
res.push_back({*i,*j,*k});
j++;
k--;
while(j<k && *j==*(j-1)){
j++;
}
while(j<k && *(k+1)==*k){
k--;
}
}
else if(t<0){
j++;
}
else if(t>0){
k--;
}
}
}
return res;
}
};