IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    [原]日志处理实验之MapReduce方法

    book_mmicky发表于 2014-05-13 15:23:30
    love 0
    实验代码下载
    1:创建日志格式处理类KPI

    package hadoop2.logs;

    import java.text.ParseException;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    import java.util.HashSet;
    import java.util.Locale;
    import java.util.Set;

    /*
    * KPI Object
    */
    public class KPI {
    private String remote_addr;// 记录客户端的ip地址
    private String remote_user;// 记录客户端用户名称,忽略属性"-"
    private String time_local;// 记录访问时间与时区
    private String request;// 记录请求的url与http协议
    private String status;// 记录请求状态;成功是200
    private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
    private String http_referer;// 用来记录从那个页面链接访问过来的
    private String http_user_agent;// 记录客户浏览器的相关信息

    private boolean valid = true;// 判断数据是否合法

    private static KPI parser(String line) {
    // System.out.println(line);
    KPI kpi = new KPI();
    String[] arr = line.split(" ");
    if (arr.length > 11) {
    kpi.setRemote_addr(arr[0]);
    kpi.setRemote_user(arr[1]);
    kpi.setTime_local(arr[3].substring(1));
    kpi.setRequest(arr[6]);
    kpi.setStatus(arr[8]);
    kpi.setBody_bytes_sent(arr[9]);
    kpi.setHttp_referer(arr[10]);

    if (arr.length > 12) {
    kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
    } else {
    kpi.setHttp_user_agent(arr[11]);
    }

    if (Integer.parseInt(kpi.getStatus()) >= 400) {// 大于400,HTTP错误
    kpi.setValid(false);
    }
    } else {
    kpi.setValid(false);
    }
    return kpi;
    }

    /**
    * 按page的pv分类
    */
    public static KPI filterPVs(String line) {
    return parser(line);
    // KPI kpi = parser(line);
    // Set<String> pages = new HashSet<String>();
    // pages.add("/about");
    // pages.add("/black-ip-list/");
    // pages.add("/cassandra-clustor/");
    // pages.add("/finance-rhive-repurchase/");
    // pages.add("/hadoop-family-roadmap/");
    // pages.add("/hadoop-hive-intro/");
    // pages.add("/hadoop-zookeeper-intro/");
    // pages.add("/hadoop-mahout-roadmap/");
    //
    // if (!pages.contains(kpi.getRequest())) {
    // kpi.setValid(false);
    // }
    // return kpi;
    }

    /**
    * 按page的独立ip分类
    */
    public static KPI filterIPs(String line) {
    return parser(line);
    // KPI kpi = parser(line);
    // Set<String> pages = new HashSet<String>();
    // pages.add("/about");
    // pages.add("/black-ip-list/");
    // pages.add("/cassandra-clustor/");
    // pages.add("/finance-rhive-repurchase/");
    // pages.add("/hadoop-family-roadmap/");
    // pages.add("/hadoop-hive-intro/");
    // pages.add("/hadoop-zookeeper-intro/");
    // pages.add("/hadoop-mahout-roadmap/");
    //
    // if (!pages.contains(kpi.getRequest())) {
    // kpi.setValid(false);
    // }
    //
    // return kpi;
    }

    /**
    * PV按浏览器分类
    */
    public static KPI filterBroswer(String line) {
    return parser(line);
    }

    /**
    * PV按小时分类
    */
    public static KPI filterTime(String line) {
    return parser(line);
    }

    /**
    * PV按访问域名分类
    */
    public static KPI filterDomain(String line) {
    return parser(line);
    }

    @Override
    public String toString() {
    StringBuilder sb = new StringBuilder();
    sb.append("valid:" + this.valid);
    sb.append("\nremote_addr:" + this.remote_addr);
    sb.append("\nremote_user:" + this.remote_user);
    sb.append("\ntime_local:" + this.time_local);
    sb.append("\nrequest:" + this.request);
    sb.append("\nstatus:" + this.status);
    sb.append("\nbody_bytes_sent:" + this.body_bytes_sent);
    sb.append("\nhttp_referer:" + this.http_referer);
    sb.append("\nhttp_user_agent:" + this.http_user_agent);
    return sb.toString();
    }

    public String getRemote_addr() {
    return remote_addr;
    }

    public void setRemote_addr(String remote_addr) {
    this.remote_addr = remote_addr;
    }

    public String getRemote_user() {
    return remote_user;
    }

    public void setRemote_user(String remote_user) {
    this.remote_user = remote_user;
    }

    public String getTime_local() {
    return time_local;
    }

    public Date getTime_local_Date() throws ParseException {
    SimpleDateFormat df = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss",
    Locale.US);
    return df.parse(this.time_local);
    }

    public String getTime_local_Date_hour() throws ParseException {
    SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHH");
    return df.format(this.getTime_local_Date());
    }

    public void setTime_local(String time_local) {
    this.time_local = time_local;
    }

    public String getRequest() {
    return request;
    }

    public String getRequest_domain() {
    // String str = this.request.replace("\"", "").replace("http://", "")
    // .replace("https://", "");
    // return str.lastIndexOf("/") > 0 ? str.substring(0, str.lastIndexOf("/")) : "/";
    String rtnString="";
    String[] request_domain = request.split("/");

    if (request_domain.length > 3) {
    for (int i = 0; i < 3; i++) {
    rtnString= rtnString + request_domain[i]+"/" ;
    }
    } else {
    for (int i = 0; i < request_domain.length; i++) {
    rtnString= request.lastIndexOf("/") > 0 ? request.substring(0, request.lastIndexOf("/")) +"/" : "/";
    }
    }

    return rtnString;
    // string value = "192.168.128.33";
    // string[] names = value.split("\\.");
    // for (int i = 0; i < names.length; i++) {
    // system.out.println(names[i]);

    }

    public void setRequest(String request) {
    this.request = request;
    }

    public String getStatus() {
    return status;
    }

    public void setStatus(String status) {
    this.status = status;
    }

    public String getBody_bytes_sent() {
    return body_bytes_sent;
    }

    public void setBody_bytes_sent(String body_bytes_sent) {
    this.body_bytes_sent = body_bytes_sent;
    }

    public String getHttp_referer() {
    return http_referer;
    }

    public String getHttp_referer_domain() {
    if (http_referer.length() < 8) {
    return http_referer;
    }

    String str = this.http_referer.replace("\"", "").replace("http://", "")
    .replace("https://", "");
    return str.indexOf("/") > 0 ? str.substring(0, str.indexOf("/")) : str;
    }

    public void setHttp_referer(String http_referer) {
    this.http_referer = http_referer;
    }

    public String getHttp_user_agent() {
    return http_user_agent;
    }

    public void setHttp_user_agent(String http_user_agent) {
    this.http_user_agent = http_user_agent;
    }

    public boolean isValid() {
    return valid;
    }

    public void setValid(boolean valid) {
    this.valid = valid;
    }

    public static void main(String args[]) {
    String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /stru.zip HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
    System.out.println(line);
    KPI kpi = new KPI();
    String[] arr = line.split(" ");

    kpi.setRemote_addr(arr[0]);
    kpi.setRemote_user(arr[1]);
    kpi.setTime_local(arr[3].substring(1));
    kpi.setRequest(arr[6]);
    kpi.setStatus(arr[8]);
    kpi.setBody_bytes_sent(arr[9]);
    kpi.setHttp_referer(arr[10]);
    kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
    // System.out.println(kpi);
    System.out.println(kpi.getRequest_domain());

    try {
    SimpleDateFormat df = new SimpleDateFormat("yyyy.MM.dd:HH:mm:ss",
    Locale.US);
    System.out.println(df.format(kpi.getTime_local_Date()));
    System.out.println(kpi.getTime_local_Date_hour());
    System.out.println(kpi.getHttp_referer_domain());
    } catch (ParseException e) {
    e.printStackTrace();
    }
    }

    }


    2:统计(所有日志)独立 ip 数目,即不同 ip 的总数
    下面代码输出了独立IP的访问次数,同时通过一个reduce计数器ReportTest.TotalIP来得到不同IP的总数。由于例程中combine和reduce采用同一方法,所以在统计IP 的总数的时候,需要取消combine过程,不然计数器将是combine过程计数和reduce过程计数过程之和。当然如果combine和reduce用不同的方法,那就不必取消combine过程了。

    package hadoop2.logs;

    import java.io.IOException;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;

    public class KPIIP {

    static enum ReportTest{
    TotalIP
    }
    public static class KPIIPMapper extends
    Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    KPI kpi = KPI.filterPVs(value.toString());
    word.set(kpi.getRemote_addr());
    context.write(word, one);
    }
    }

    public static class KPIIPReducer extends
    Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    @Override
    public void reduce(Text key, Iterable<IntWritable> values,
    Context context) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
    sum += val.get();
    }
    result.set(sum);
    context.getCounter(ReportTest.TotalIP).increment(1);
    context.write(key, result);
    }
    }

    public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args)
    .getRemainingArgs();
    if (otherArgs.length != 2) {
    System.err.println("Usage: KPIIP <in> <out>");
    System.exit(2);
    }

    Job job = new Job(conf, "KPIIP");
    job.setJarByClass(KPIIP.class);
    job.setMapperClass(KPIIPMapper.class);
    //job.setCombinerClass(KPIIPReducer.class);
    job.setReducerClass(KPIIPReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    }


    3:统计(所有日志)每个子目录访问次数
    对于日志来说,客户端的访问还有很多种形式,有可能是点击的、有可能是链接等等,日志中记录下来的访问请求要根据需要进行处理来满足分析的需求,可以通过编写KPI.filterPVs方法来达到过滤的目的,用KPI.getRequest_domain来格式化要分析的用户请求数据,最终通过mapreduce来完成分析之目的。

    package hadoop2.logs;

    import java.io.IOException;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;

    public class KPIPV {

    public static class KPIPVMapper extends
    Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    KPI kpi = KPI.filterPVs(value.toString());
    word.set(kpi.getRequest_domain());
    context.write(word, one);
    }
    }

    public static class KPIPVReducer extends
    Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    @Override
    public void reduce(Text key, Iterable<IntWritable> values,
    Context context) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
    sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
    }
    }

    public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args)
    .getRemainingArgs();
    if (otherArgs.length != 2) {
    System.err.println("Usage: KPIPV <in> <out>");
    System.exit(2);
    }

    Job job = new Job(conf, "KPIPV");
    job.setJarByClass(KPIPV.class);
    job.setMapperClass(KPIPVMapper.class);
    job.setCombinerClass(KPIPVReducer.class);
    job.setReducerClass(KPIPVReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    }


    4:统计(所有日志)每个 ip,访问的子目录次数
    和上面的例子一样,只是map的key中多了一个IP信息。

    package hadoop2.logs;

    import java.io.IOException;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;

    public class KPI3 {
    public static class KPI3Mapper extends
    Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    KPI kpi = KPI.filterPVs(value.toString());
    word.set(kpi.getRemote_addr() + " " + kpi.getRequest_domain());
    context.write(word, one);
    }
    }

    public static class KPI3Reducer extends
    Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    @Override
    public void reduce(Text key, Iterable<IntWritable> values,
    Context context) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
    sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
    }
    }

    public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args)
    .getRemainingArgs();
    if (otherArgs.length != 2) {
    System.err.println("Usage: KPI3 <in> <out>");
    System.exit(2);
    }

    Job job = new Job(conf, "KPI3");
    job.setJarByClass(KPI3.class);
    job.setMapperClass(KPI3Mapper.class);
    job.setCombinerClass(KPI3Reducer.class);
    job.setReducerClass(KPI3Reducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    }




沪ICP备19023445号-2号
友情链接