上一篇文章记录了RGB/YUV视频像素数据的处理方法,本文继续上一篇文章的内容,记录PCM音频采样数据的处理方法。音频采样数据在视频播放器的解码流程中的位置如下图所示。
注:PCM音频数据可以使用音频编辑软件导入查看。例如收费的专业音频编辑软件Adobe Audition,或者免费开源的音频编辑软件Audacity。
/** * Split Left and Right channel of 16LE PCM file. * @param url Location of PCM file. * */ int simplest_pcm16le_split(char *url){ FILE *fp=fopen(url,"rb+"); FILE *fp1=fopen("output_l.pcm","wb+"); FILE *fp2=fopen("output_r.pcm","wb+"); unsigned char *sample=(unsigned char *)malloc(4); while(!feof(fp)){ fread(sample,1,4,fp); //L fwrite(sample,1,2,fp1); //R fwrite(sample+2,1,2,fp2); } free(sample); fclose(fp); fclose(fp1); fclose(fp2); return 0; }
simplest_pcm16le_split("NocturneNo2inEflat_44.1k_s16le.pcm");
从代码可以看出,PCM16LE双声道数据中左声道和右声道的采样值是间隔存储的。每个采样值占用2Byte空间。代码运行后,会把NocturneNo2inEflat_44.1k_s16le.pcm的PCM16LE格式的数据分离为两个单声道数据:
output_l.pcm:左声道数据。注:本文中声音样值的采样频率一律是44100Hz,采样格式一律为16LE。“16”代表采样位数是16bit。由于1Byte=8bit,所以一个声道的一个采样值占用2Byte。“LE”代表Little Endian,代表2 Byte采样值的存储方式为高位存在高地址中。output_r.pcm:右声道数据。
下图为输入的双声道PCM数据的波形图。上面的波形图是左声道的图形,下面的波形图是右声道的波形。图中的横坐标是时间,总长度为22秒;纵坐标是取样值,取值范围从-32768到32767。
下图为分离后左声道数据output_l.pcm的音频波形图。
下图为分离后右声道数据output_r.pcm的音频波形图。
/** * Halve volume of Left channel of 16LE PCM file * @param url Location of PCM file. */ int simplest_pcm16le_halfvolumeleft(char *url){ FILE *fp=fopen(url,"rb+"); FILE *fp1=fopen("output_halfleft.pcm","wb+"); int cnt=0; unsigned char *sample=(unsigned char *)malloc(4); while(!feof(fp)){ short *samplenum=NULL; fread(sample,1,4,fp); samplenum=(short *)sample; *samplenum=*samplenum/2; //L fwrite(sample,1,2,fp1); //R fwrite(sample+2,1,2,fp1); cnt++; } printf("Sample Cnt:%d\n",cnt); free(sample); fclose(fp); fclose(fp1); return 0; }
simplest_pcm16le_halfvolumeleft("NocturneNo2inEflat_44.1k_s16le.pcm");
从源代码可以看出,本程序在读出左声道的2 Byte的取样值之后,将其当成了C语言中的一个short类型的变量。将该数值除以2之后写回到了PCM文件中。下图为输入PCM双声道音频采样数据的波形图。
下图为输出的左声道经过处理后的波形图。可以看出左声道的波形幅度降低了一半。
/** * Re-sample to double the speed of 16LE PCM file * @param url Location of PCM file. */ int simplest_pcm16le_doublespeed(char *url){ FILE *fp=fopen(url,"rb+"); FILE *fp1=fopen("output_doublespeed.pcm","wb+"); int cnt=0; unsigned char *sample=(unsigned char *)malloc(4); while(!feof(fp)){ fread(sample,1,4,fp); if(cnt%2!=0){ //L fwrite(sample,1,2,fp1); //R fwrite(sample+2,1,2,fp1); } cnt++; } printf("Sample Cnt:%d\n",cnt); free(sample); fclose(fp); fclose(fp1); return 0; }
simplest_pcm16le_doublespeed("NocturneNo2inEflat_44.1k_s16le.pcm");
从源代码可以看出,本程序只采样了每个声道奇数点的样值。处理完成后,原本22秒左右的音频变成了11秒左右。音频的播放速度提高了2倍,音频的音调也变高了很多。下图为输入PCM双声道音频采样数据的波形图。
下图为输出的PCM双声道音频采样数据的波形图。通过时间轴可以看出音频变短了很多。
本程序中的函数可以通过计算的方式将PCM16LE双声道数据16bit的采样位数转换为8bit。函数的代码如下所示。
/** * Convert PCM-16 data to PCM-8 data. * @param url Location of PCM file. */ int simplest_pcm16le_to_pcm8(char *url){ FILE *fp=fopen(url,"rb+"); FILE *fp1=fopen("output_8.pcm","wb+"); int cnt=0; unsigned char *sample=(unsigned char *)malloc(4); while(!feof(fp)){ short *samplenum16=NULL; char samplenum8=0; unsigned char samplenum8_u=0; fread(sample,1,4,fp); //(-32768-32767) samplenum16=(short *)sample; samplenum8=(*samplenum16)>>8; //(0-255) samplenum8_u=samplenum8+128; //L fwrite(&samplenum8_u,1,1,fp1); samplenum16=(short *)(sample+2); samplenum8=(*samplenum16)>>8; samplenum8_u=samplenum8+128; //R fwrite(&samplenum8_u,1,1,fp1); cnt++; } printf("Sample Cnt:%d\n",cnt); free(sample); fclose(fp); fclose(fp1); return 0; }
simplest_pcm16le_to_pcm8("NocturneNo2inEflat_44.1k_s16le.pcm");
PCM16LE格式的采样数据的取值范围是-32768到32767,而PCM8格式的采样数据的取值范围是0到255。所以PCM16LE转换到PCM8需要经过两个步骤:第一步是将-32768到32767的16bit有符号数值转换为-128到127的8bit有符号数值,第二步是将-128到127的8bit有符号数值转换为0到255的8bit无符号数值。在本程序中,16bit采样数据是通过short类型变量存储的,而8bit采样数据是通过unsigned char类型存储的。下图为输入的16bit的PCM双声道音频采样数据的波形图。
/** * Cut a 16LE PCM single channel file. * @param url Location of PCM file. * @param start_num start point * @param dur_num how much point to cut */ int simplest_pcm16le_cut_singlechannel(char *url,int start_num,int dur_num){ FILE *fp=fopen(url,"rb+"); FILE *fp1=fopen("output_cut.pcm","wb+"); FILE *fp_stat=fopen("output_cut.txt","wb+"); unsigned char *sample=(unsigned char *)malloc(2); int cnt=0; while(!feof(fp)){ fread(sample,1,2,fp); if(cnt>start_num&&cnt<=(start_num+dur_num)){ fwrite(sample,1,2,fp1); short samplenum=sample[1]; samplenum=samplenum*256; samplenum=samplenum+sample[0]; fprintf(fp_stat,"%6d,",samplenum); if(cnt%10==0) fprintf(fp_stat,"\n",samplenum); } cnt++; } free(sample); fclose(fp); fclose(fp1); fclose(fp_stat); return 0; }
simplest_pcm16le_cut_singlechannel("drum.pcm",2360,120);
本程序可以从PCM数据中选取一段采样值保存下来,并且输出这些采样值的数值。上述代码运行后,会把单声道PCM16LE格式的“drum.pcm”中从2360点开始的120点的数据保存成output_cut.pcm文件。下图为“drum.pcm”的波形图,该音频采样频率为44100KHz,长度为0.5秒,一共包含约22050个采样点。
下图为截取出来的output_cut.pcm文件中的数据。
4460, 5192, 5956, 6680, 7199, 6706, 5727, 4481, 3261, 1993, 1264, 747, 767, 752, 1248, 1975, 2473, 2955, 2952, 2447, 974, -1267, -4000, -6965,-10210,-13414,-16639,-19363,-21329,-22541, -23028,-22545,-21055,-19067,-16829,-14859,-12596, -9900, -6684, -3475, -983, 1733, 3978, 5734, 6720, 6978, 6993, 7223, 7225, 7440, 7688, 8431, 8944, 9468, 9947, 10688, 11194, 11946, 12449, 12446, 12456, 11974, 11454, 10952, 10167, 9425, 8153, 6941, 5436, 3716, 1952, 236, -1254, -2463, -3493, -4223, -4695, -4927, -5190, -4941, -4188, -2956, -1490, -40, 705, 932, 446, -776, -2512, -3994, -5723, -7201, -8687,-10157,-11134,-11661,-11642,-11168,-10155, -9142, -7888, -7146, -6186, -5694, -4971, -4715, -4498, -4471, -4468, -4452, -4452, -3940, -2980, -1984, -752, 257, 1021, 1264, 1032, 31,
/** * Convert PCM16LE raw data to WAVE format * @param pcmpath Input PCM file. * @param channels Channel number of PCM file. * @param sample_rate Sample rate of PCM file. * @param wavepath Output WAVE file. */ int simplest_pcm16le_to_wave(const char *pcmpath,int channels,int sample_rate,const char *wavepath) { typedef struct WAVE_HEADER{ char fccID[4]; unsigned long dwSize; char fccType[4]; }WAVE_HEADER; typedef struct WAVE_FMT{ char fccID[4]; unsigned long dwSize; unsigned short wFormatTag; unsigned short wChannels; unsigned long dwSamplesPerSec; unsigned long dwAvgBytesPerSec; unsigned short wBlockAlign; unsigned short uiBitsPerSample; }WAVE_FMT; typedef struct WAVE_DATA{ char fccID[4]; unsigned long dwSize; }WAVE_DATA; if(channels==0||sample_rate==0){ channels = 2; sample_rate = 44100; } int bits = 16; WAVE_HEADER pcmHEADER; WAVE_FMT pcmFMT; WAVE_DATA pcmDATA; unsigned short m_pcmData; FILE *fp,*fpout; fp=fopen(pcmpath, "rb"); if(fp == NULL) { printf("open pcm file error\n"); return -1; } fpout=fopen(wavepath, "wb+"); if(fpout == NULL) { printf("create wav file error\n"); return -1; } //WAVE_HEADER memcpy(pcmHEADER.fccID,"RIFF",strlen("RIFF")); memcpy(pcmHEADER.fccType,"WAVE",strlen("WAVE")); fseek(fpout,sizeof(WAVE_HEADER),1); //WAVE_FMT pcmFMT.dwSamplesPerSec=sample_rate; pcmFMT.dwAvgBytesPerSec=pcmFMT.dwSamplesPerSec*sizeof(m_pcmData); pcmFMT.uiBitsPerSample=bits; memcpy(pcmFMT.fccID,"fmt ",strlen("fmt ")); pcmFMT.dwSize=16; pcmFMT.wBlockAlign=2; pcmFMT.wChannels=channels; pcmFMT.wFormatTag=1; fwrite(&pcmFMT,sizeof(WAVE_FMT),1,fpout); //WAVE_DATA; memcpy(pcmDATA.fccID,"data",strlen("data")); pcmDATA.dwSize=0; fseek(fpout,sizeof(WAVE_DATA),SEEK_CUR); fread(&m_pcmData,sizeof(unsigned short),1,fp); while(!feof(fp)){ pcmDATA.dwSize+=2; fwrite(&m_pcmData,sizeof(unsigned short),1,fpout); fread(&m_pcmData,sizeof(unsigned short),1,fp); } pcmHEADER.dwSize=44+pcmDATA.dwSize; rewind(fpout); fwrite(&pcmHEADER,sizeof(WAVE_HEADER),1,fpout); fseek(fpout,sizeof(WAVE_FMT),SEEK_CUR); fwrite(&pcmDATA,sizeof(WAVE_DATA),1,fpout); fclose(fp); fclose(fpout); return 0; }
simplest_pcm16le_to_wave("NocturneNo2inEflat_44.1k_s16le.pcm",2,44100,"output_nocturne.wav");
WAVE_HEADER |
WAVE_FMT |
WAVE_DATA |
PCM数据 |
typedef struct WAVE_HEADER{ char fccID[4]; unsigned long dwSize; char fccType[4]; }WAVE_HEADER; typedef struct WAVE_FMT{ char fccID[4]; unsigned long dwSize; unsigned short wFormatTag; unsigned short wChannels; unsigned long dwSamplesPerSec; unsigned long dwAvgBytesPerSec; unsigned short wBlockAlign; unsigned short uiBitsPerSample; }WAVE_FMT; typedef struct WAVE_DATA{ char fccID[4]; unsigned long dwSize; }WAVE_DATA;
项目主页
SourceForge:https://sourceforge.net/projects/simplest-mediadata-test/
Github:https://github.com/leixiaohua1020/simplest_mediadata_test
开源中国:http://git.oschina.net/leixiaohua1020/simplest_mediadata_test(6)UDP-RTP协议分析程序。可以将分析UDP/RTP/MPEG-TS数据包。
雷霄骅 (Lei Xiaohua)
leixiaohua1020@126.com
http://blog.csdn.net/leixiaohua1020