IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    [原]碰撞检测之Box-Box检测

    qp120291570发表于 2016-03-07 02:20:14
    love 0

    2D情况

    首先回顾一下SAP



    两个凸包多边形,当且仅当存在一条线,这两个多边形在这条线上的投影不相交,则这两个多边形也不相交.


    这条线称为Separating Axis.垂直Separating Axis存在一条Separating Line将两个多边形分开。


    这里还有一个要确定的,就是如果两个矩形之间存在Separating Line,则一定存在一条和两个矩形中的一条边平行。每个矩形对边平行,则我们只需要检查四个方向是否存在Separating Line,如下图



    找Separating Line 就是找Separating Axis, Separating Axis也只有四个方向,所以将矩形在四个轴上投影就可以了,如下图









    下面来看具体的计算


    定义下面几个变量

    PA = coordinate position of the center of rectangle A
    Ax = unit vector representing the local x-axis of A
    Ay = unit vector representing the local y-axis of A
    WA = half width of A (corresponds with the local x-axis of A)
    HA = half height of A (corresponds with the local y-axis of A)


    PB = coordinate position of the center of rectangle B

    Bx = unit vector representing the local x-axis of B
    By = unit vector representing the local y-axis of B
    WB = half width of B (corresponds with the local x-axis of B)
    HB = half height of B (corresponds with the local y-axis of B)


    T= PB - PA

    轴L是Seprating Axis的条件是

    |Proj ( T )| > 0.5 * |Proj ( RectangleA )| + 0.5 *|Proj ( RectangleB )|


    Proj是投影计算, 展开

    | T • L | > | ( WA*Ax ) • L | + | ( HA*Ay ) • L | + | ( WB*Bx ) • L | + |( HB*By ) • L |

    L只有四种情况,AX, AY, BX, BY

    CASE 1:
    // L = Ax
    | T • Ax | > | ( WA*Ax ) • Ax | + | ( HA*Ay ) • Ax | + | ( WB*Bx ) • Ax | + |( HB*By ) • Ax |
    | T • Ax | > WA + 0 + | ( WB*Bx ) • Ax | + |( HB*By ) • Ax |
    | T • Ax | > WA + | ( WB*Bx ) • Ax | + |( HB*By ) • Ax |

    如果成立,存在Separating Axis平行Ax。


    CASE 2:
    // L = Ay
    | T • Ay | > HA + | ( WB*Bx ) • Ay | + |( HB*By ) • Ay |

    如果成立,存在Separating Axis平行Ay。


    CASE 3:
    // L = Bx
    | T • Bx | > | ( WA* Ax ) • Bx | + | ( HA*Ay ) • Bx | + WB

    如果成立,存在Separating Axis平行Bx。


    CASE 4:
    // L = By
    | T • By | > | ( WA* Ax ) • By | + | ( HA*Ay ) • By | + HB

    如果成立,存在Separating Axis平行By。



    三维情况

    在三维情况下的,之前的Separating Line就变成了Separating Plane,如下图



    每个Box都有三组面,每组面都是平行的,Separating Plane都是平行其中的一个面。则两个box的SAT中可能的Separating Axis有六个




    下图中Separating Plane就平行于右边Box的一个面



    然而还有一种情况,如下



    这种情况,两个Box并不相交,但是他们并没有发生碰撞,这种情况,Separating Plane的法线是两条红线的叉乘



    所以在三维情况下Box和Box的碰撞检测需要判定的情况有6+9种

    CASE 1:L = Ax  CASE 2:L = Ay  CASE 3:L = Az   CASE 4:L = Bx   CASE 5:L = By  CASE 6:L = Bz

    CASE 7:L = Ax  Bx  CASE 8:L = Ax  By  CASE 9:L = Ax  Bz  CASE 10:L = Ay  Bx  

    CASE 11:L = Ay  By  CASE 12:L = Ay  Bz  CASE 13:L = Az  Bx  CASE 14:L = Az  By  CASE 15:L = Az  Bz


    判断条件还是

    | T • L | > | ( WA*Ax ) • L | + | ( HA*Ay ) • L | + |( DA*Az ) • L |+ | ( WB*Bx ) • L | + |( HB*By ) • L | + |( DB*Bz ) • L |

    一点优化,关于T • L 

    T • (Ax * Bx) =(T •  Az)(Ay •  Bx) - (T•  Ay)(Az •  Bx)

    这里将有叉乘的地方进行了转化,要看证明的请看参考资料。


    好,可以上代码了

      public static bool IntersectBoxBox(Box box0, Box box1)
            {
                Vector3 v = box1.center - box0.center;
    
                //Compute A's basis
                Vector3 VAx = box0.rotation * new Vector3(1, 0, 0);
                Vector3 VAy = box0.rotation * new Vector3(0, 1, 0);
                Vector3 VAz = box0.rotation * new Vector3(0, 0, 1);
    
                Vector3[] VA = new Vector3[3];
                VA[0] = VAx;
                VA[1] = VAy;
                VA[2] = VAz;
    
                //Compute B's basis
                Vector3 VBx = box1.rotation * new Vector3(1, 0, 0);
                Vector3 VBy = box1.rotation * new Vector3(0, 1, 0);
                Vector3 VBz = box1.rotation * new Vector3(0, 0, 1);
    
                Vector3[] VB = new Vector3[3];
                VB[0] = VBx;
                VB[1] = VBy;
                VB[2] = VBz;
    
                Vector3 T = new Vector3(Vector3.Dot(v, VAx), Vector3.Dot(v, VAy), Vector3.Dot(v, VAz));
    
                float[,] R = new float[3, 3];
                float[,] FR = new float[3, 3];
                float ra, rb, t;
    
                for (int i = 0; i < 3; i++)
                {
                    for (int k = 0; k < 3; k++)
                    {
                        R[i, k] = Vector3.Dot(VA[i], VB[k]);
                        FR[i, k] = 1e-6f + Mathf.Abs(R[i, k]);
                    }
                }
    
                // A's basis vectors
                for (int i = 0; i < 3; i++)
                {
                    ra = box0.extents[i];
                    rb = box1.extents[0] * FR[i, 0] + box1.extents[1] * FR[i, 1] + box1.extents[2] * FR[i, 2];
                    t = Mathf.Abs(T[i]);
                    if (t > ra + rb) return false;
                }
    
                // B's basis vectors
                for (int k = 0; k < 3; k++)
                {
                    ra = box0.extents[0] * FR[0, k] + box0.extents[1] * FR[1, k] + box0.extents[2] * FR[2, k];
                    rb = box1.extents[k];
                    t = Mathf.Abs(T[0] * R[0, k] + T[1] * R[1, k] + T[2] * R[2, k]);
                    if (t > ra + rb) return false;
                }
    
                //9 cross products
    
                //L = A0 x B0
                ra = box0.extents[1] * FR[2, 0] + box0.extents[2] * FR[1, 0];
                rb = box1.extents[1] * FR[0, 2] + box1.extents[2] * FR[0, 1];
                t = Mathf.Abs(T[2] * R[1, 0] - T[1] * R[2, 0]);
                if (t > ra + rb) return false;
    
                //L = A0 x B1
                ra = box0.extents[1] * FR[2, 1] + box0.extents[2] * FR[1, 1];
                rb = box1.extents[0] * FR[0, 2] + box1.extents[2] * FR[0, 0];
                t = Mathf.Abs(T[2] * R[1, 1] - T[1] * R[2, 1]);
                if (t > ra + rb) return false;
    
                //L = A0 x B2
                ra = box0.extents[1] * FR[2, 2] + box0.extents[2] * FR[1, 2];
                rb = box1.extents[0] * FR[0, 1] + box1.extents[1] * FR[0, 0];
                t = Mathf.Abs(T[2] * R[1, 2] - T[1] * R[2, 2]);
                if (t > ra + rb) return false;
    
                //L = A1 x B0
                ra = box0.extents[0] * FR[2, 0] + box0.extents[2] * FR[0, 0];
                rb = box1.extents[1] * FR[1, 2] + box1.extents[2] * FR[1, 1];
                t = Mathf.Abs(T[0] * R[2, 0] - T[2] * R[0, 0]);
                if (t > ra + rb) return false;
    
                //L = A1 x B1
                ra = box0.extents[0] * FR[2, 1] + box0.extents[2] * FR[0, 1];
                rb = box1.extents[0] * FR[1, 2] + box1.extents[2] * FR[1, 0];
                t = Mathf.Abs(T[0] * R[2, 1] - T[2] * R[0, 1]);
                if (t > ra + rb) return false;
    
                //L = A1 x B2
                ra = box0.extents[0] * FR[2, 2] + box0.extents[2] * FR[0, 2];
                rb = box1.extents[0] * FR[1, 1] + box1.extents[1] * FR[1, 0];
                t = Mathf.Abs(T[0] * R[2, 2] - T[2] * R[0, 2]);
                if (t > ra + rb) return false;
    
                //L = A2 x B0
                ra = box0.extents[0] * FR[1, 0] + box0.extents[1] * FR[0, 0];
                rb = box1.extents[1] * FR[2, 2] + box1.extents[2] * FR[2, 1];
                t = Mathf.Abs(T[1] * R[0, 0] - T[0] * R[1, 0]);
                if (t > ra + rb) return false;
    
                //L = A2 x B1
                ra = box0.extents[0] * FR[1, 1] + box0.extents[1] * FR[0, 1];
                rb = box1.extents[0] * FR[2, 2] + box1.extents[2] * FR[2, 0];
                t = Mathf.Abs(T[1] * R[0, 1] - T[0] * R[1, 1]);
                if (t > ra + rb) return false;
    
                //L = A2 x B2
                ra = box0.extents[0] * FR[1, 2] + box0.extents[1] * FR[0, 2];
                rb = box1.extents[0] * FR[2, 1] + box1.extents[1] * FR[2, 0];
                t = Mathf.Abs(T[1] * R[0, 2] - T[0] * R[1, 2]);
                if (t > ra + rb) return false;
    
                return true;
            }

    测试代码

    public class BoxBoxTester : MonoBehaviour {
        public GameObject box;
        public GameObject box1;
        Box _box;
        Box _box1;
        // Use this for initialization
        void Start()
        {
            _box = new Box();
            _box1 = new Box();
        }
    
        // Update is called once per frame
        void Update()
        {
            _box.center = box.transform.position;
            _box.rotation = box.transform.rotation;
            _box.extents = 0.5f * box.transform.localScale;
    
            _box1.center = box1.transform.position;
            _box1.rotation = box1.transform.rotation;
            _box1.extents = 0.5f * box1.transform.localScale;
    
            if (NIntersectTests.IntersectBoxBox(_box, _box1))
            {
                box.GetComponent<MeshRenderer>().materials[0].SetColor("_Color", new Color(1, 0, 0));
            }
            else
            {
                box.GetComponent<MeshRenderer>().materials[0].SetColor("_Color", new Color(1, 1, 1));
            }
        }
    }
    


    运行结果




    参考

    Separating Axis Theorem for Oriented Bounding Boxes



沪ICP备19023445号-2号
友情链接