simhash是google用来处理海量文本去重的算法。 google出品,你懂的。 simhash最牛逼的一点就是将一个文档,最后转换成一个64位的字节,暂且称之为特征字,然后判断重复只需要判断他们的特征字的距离是不是<n(根据经验这个n一般取值为3),就可以判断两个文档是否相似。
simhash值的生成图解如下
大概花三分钟看懂这个图就差不多怎么实现这个simhash算法了。特别简单。谷歌出品嘛,简单实用。
算法过程大概如下:
(feature, weight)
们。 记为 feature_weight_pairs
= [fw1, fw2 … fwn],其中 fwn = (
feature_n,
weight_n`)。hash_weight_pairs
= [ (hash(feature), weight) for feature, weight infeature_weight_pairs
] 生成图中的(hash,weight)
们, 此时假设hash生成的位数bits_count = 6
(如图);hash_weight_pairs
进行位的纵向累加,如果该位是1,则+weight
,如果是0,则-weight
,最后生成bits_count
个数字,如图所示是[13, 108, -22, -5, -32, 55]
, 这里产生的值和hash函数所用的算法相关。[13,108,-22,-5,-32,55] -> 110001
这个就很简单啦,正1负0。到此,如何从一个doc到一个simhash值的过程已经讲明白了。 但是还有一个重要的部分没讲,
『simhash值的海明距离计算』
二进制串A 和 二进制串B 的海明距离 就是 A xor B
后二进制中1的个数。
举例如下:
A = 100111;
B = 101010;
hamming_distance(A, B) = count_1(A xor B) = count_1(001101) = 3;
当我们算出所有doc的simhash值之后,需要计算doc A和doc B之间是否相似的条件是:
A和B的海明距离是否小于等于n,这个n值根据经验一般取值为3,
simhash本质上是局部敏感性的hash,和md5之类的不一样。 正因为它的局部敏感性,所以我们可以使用海明距离来衡量simhash值的相似度。
『高效计算二进制序列中1的个数』
/* src/Simhasher.hpp */ bool isEqual(uint64_t lhs, uint64_t rhs, unsigned short n = 3) { unsigned short cnt = 0; lhs ^= rhs; while(lhs && cnt <= n) { lhs &= lhs - 1; cnt++; } if(cnt <= n) { return true; } return false; }