IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    LeetCode:LRU Cache

    summer发表于 2016-06-23 13:48:53
    love 0

    LRU Cache

    Total Accepted: 76226 Total
    Submissions: 481333
     Difficulty: Hard

    Design and implement a data structure for Least Recently Used (LRU) cache. 

    It should support the following operations: get and set.

    get(key) - Get the value (will always be
    positive) of the key if the key exists in the cache, otherwise return -1.

    set(key, value) - Set or insert the value if the key is not already present. When the
    cache reached its capacity, 

    it should invalidate the least recently used item before inserting a new item.

    Subscribe to see which companies asked this question

    Hide Tags

     Design

    思路:

    题目要求实现“最近最少使用”缓存算法,这在Android中的图片缓存中有使用。

    实现要求是,最近被访问(get,set)的放前后;最久被访问的放在最后,但容量不足时删除此结点。

    实现方式:双链表 + HashMap


    java code:

    class Node {
    int key,value;
    Node pre,next;

    public Node(int key, int value) {
    this.key = key;
    this.value = value;
    }
    }

    public class LRUCache {

    HashMap<Integer, Node> map;
    int capicity;
    int count;
    Node head,tail;

    // 设置一个头结点和一个尾结点,作为哨兵
    public LRUCache(int capacity) {
    this.capicity = capacity;
    map = new HashMap<>();
    head = new Node(0, 0);
    tail = new Node(0, 0);

    head.next = tail;
    tail.pre = head;
    head.pre = null;
    tail.next = null;
    count = 0;
    }

    // 删除结点
    public void deleteNode(Node node) {
    node.pre.next = node.next;
    node.next.pre = node.pre;
    }

    // 添加,添加到head的下一个结点
    public void addToHead(Node node) {
    node.pre = head;
    node.next = head.next;

    head.next.pre = node;
    head.next = node;
    }

    //
    public int get(int key) {
    if(map.get(key)!=null) {
    Node node = map.get(key);
    int result = node.value;
    deleteNode(node);
    addToHead(node);
    return result;
    }
    return -1;
    }

    //
    public void set(int key, int value) {
    if(map.get(key)!=null) {
    Node node = map.get(key);
    node.value = value;
    deleteNode(node);
    addToHead(node);
    }else{
    Node node = new Node(key, value);
    map.put(key, node);
    if(count < capicity) {
    count++;
    addToHead(node);
    }else{
    map.remove(tail.pre.key);
    deleteNode(tail.pre);
    addToHead(node);
    }
    }
    }
    }

    集合类中LinkedHashMap的实现方式就是:双链表 + HashMap,也是Android LRU Cache中实现使用数据结构,因此只需在LinkedHashMap的基础上添加容量限制即可。


    java code:

    public class LRUCache {

    private Map<Integer, Integer> map;

    public LRUCache(int capacity) {
    map = new LinkedCappedHashMap<>(capacity);
    }

    public int get(int key) {
    if(!map.containsKey(key)) { return -1; }
    return map.get(key);
    }

    public void set(int key, int value) {
    map.put(key,value);
    }

    private static class LinkedCappedHashMap<K,V> extends LinkedHashMap<K,V> {

    int maximumCapacity;

    LinkedCappedHashMap(int maximumCapacity) {
    super(16, 0.75f, true);
    this.maximumCapacity = maximumCapacity;
    }

    protected boolean removeEldestEntry(Map.Entry eldest) {
    return size() > maximumCapacity;
    }
    }
    }



沪ICP备19023445号-2号
友情链接