IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    [原]机器学习-逻辑回归-代价函数

    cgl1079743846发表于 2016-08-24 23:33:27
    love 0

    1. 引言

    回到线性回归模型中,训练集和代价函数如下图

    如果我们还用J(θ)函数做为逻辑回归模型的代价函数,用H(x) = g(θ^T * x),曲线如下图所示

    发现J(θ)的曲线图是"非凸函数",存在多个局部最小值,不利于我们求解全局最小值

    因此,上述的代价函数对于逻辑回归是不可行的,我们需要其他形式的代价函数来保证逻辑回归的代价函数是凸函数。

    2. 代价函数

    这里我们先对线性回归模型中的代价函数J(θ)进行简单的改写

    用Cost(h(x), y) = 1/2(h(x) - y)^2 代替

    在这里我们选择对数似然损失函数做为逻辑回归模型的代价函数

    分析下这个代价函数

    (1). 当y=1的时候,Cost(h(x), y) = -log(h(x))。h(x)的值域0~1,-log(h(x))的曲线图,如下

    从图中可以看出

    1. h(x)的值趋近于1的时候,代价函数的值越小趋近于0,也就是说预测的值h(x)和训练集结果y=1越接近,预测错误的代价越来越接近于0,分类结果为1的概率为1
    2. 当h(x)的值趋近于0的时候,代价函数的值无穷大,也就说预测的值h(x)和训练集结果y=1越相反,预测错误的代价越来越趋于无穷大,分类结果为1的概率为0

    (2). 当y=0的时候, Cost(h(x), y) = -log(1-h(x))。h(x)的值域0~1,-log(1-h(x))的曲线图,如下

    从图中可以看出

    1. h(x)的值趋近于1的时候,代价函数的值趋于无穷大,也就是说预测的值h(x)和训练集结果y=0越相反,预测错误的代价越来越趋于无穷大,分类结果为0的概率为1-h(x)等于0
    2. 当h(x)的值趋近于0的时候,代价函数的值越小趋近于0,也就说预测的值h(x)和训练集结果y=0越接近,预测错误的代价越来越接近于0,分类结果为0的概率为1-h(x)等于1


沪ICP备19023445号-2号
友情链接