Cloga:这份文档是euroscipy关于Python科学计算资源的一个教程。英文版地址为:http://scipy-lectures.github.io/,是学习Python科学计算生态体系很好的资料,因此,我会陆续将它翻译为中文,相关Gitbub地址为:https://github.com/cloga/scipy-lecture-notes_cn,完整的中文目录
Matplotlib 可能是Python惟一一个最广泛使用的二维图包。它同时提供了从Python中可视化数据非常的快速方式以及多种格式的出版质量图片。我们将在交互模式下研究Matplotlib,包含大多数的常用案例。
IPython是强化版交互Python shell,有许多有趣的功能,包括:输入输出的命名、访问shell命令改进错误排除等。它位于Python中的科学计算工作流的核心,要让它与Matplotlib的结合使用:
用命令行参数 -pylab
(--pylab
从IPython0.12开始)启动IPython,获得带有Matlab/Mathematica类似功能的交互Matplotlib session。
pylab提供了matplotlib面向对象的绘图库的程序接口。它的模型与Matlab™非常相近。因此,pylab中的绝大多数绘图命令Matlab™都有带有相似函数的类似实现。重要的命令会以交互例子来解释。
在这个部分,我们将在同一个图像中绘制cosine和sine函数。从默认设置开始,我们将不断丰富图片,让它看起来更漂亮。
第一步获得sine和cosine函数的数据:
import numpy as np
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
X
现在是Numpy数组,范围是-π
到+π
之间(包含)的256个值。C是cosine(256个值),而S是sine(256个值)
要运行例子,你可以在IPython的交互session中输入这些命令:
ipython --pylab
这会将我们带到IPython提示符:
IPython 2.3.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
Using matplotlib backend: MacOSX
你可以下载每个示例,然后用平常的Python运行,但是,你将没法动态的数据操作:
python exercice_1.py
通过点击对应的图片,你可以获得每一步的源码。
提示:文档
Matplotlib有一组默认设置,允许自定义所有的属性。你几乎可以控制在matplotlib中的所有属性:图片大小和dpi、线长度、颜色和样式、坐标轴、坐标轴和网格属性、文本和字体属性等等。
import pylab as pl
import numpy as np
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
pl.plot(X, C)
pl.plot(X, S)
pl.show()
提示:文档
在下面的脚本中,我们标示(备注)了影响绘图外观的所有图片设置。
这些设置被显式的设置为默认值,但是现在你可以交互的实验这些值以便验证他们的效果(看一下下面的线属性和线样式)。
import pylab as pl
import numpy as np
# 创建一个大小为 8X6 英寸,每英寸80个点的图片
pl.figure(figsize=(8, 6), dpi=80)
# 从1X1的网格创建一个子图片
pl.subplot(1, 1, 1)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
# 用宽度为1(像素)的蓝色连续直线绘制cosine
pl.plot(X, C, color="blue", linewidth=1.0, linestyle="-")
# 用宽度为1(像素)的绿色连续直线绘制sine
pl.plot(X, S, color="green", linewidth=1.0, linestyle="-")
# 设置x轴的极值
pl.xlim(-4.0, 4.0)
# 设置x轴的刻度值
pl.xticks(np.linspace(-4, 4, 9, endpoint=True))
# 设置y轴的极值
pl.ylim(-1.0, 1.0)
# 设置y轴的刻度值
pl.yticks(np.linspace(-1, 1, 5, endpoint=True))
# 用72dpi保存图片
# savefig("exercice_2.png", dpi=72)
# 在屏幕上显示结果
pl.show()
提示:文档
首先,我们想要cosine是蓝色,sine是红色,两者都是稍稍粗一点的线。我们也改变了一点图片的大小,让它更加水平。
pl.figure(figsize=(10, 6), dpi=80)
pl.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
pl.plot(X, S, color="red", linewidth=2.5, linestyle="-")
提示:文档
当前的图片的极值限制太拥挤了,我们希望留一点空间以便清晰的看到所有的数据点。
pl.xlim(X.min() * 1.1, X.max() * 1.1)
pl.ylim(C.min() * 1.1, C.max() * 1.1)
提示:文档
现在的刻度不太理想,因为他们没有显示对于sine和cosine有意义的值(+/-π,+/-π/2)。我们将改变这些刻度,让他们只显示这些值。
pl.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
pl.yticks([-1, 0, +1])
提示:文档
刻度现在放在了正确的位置,但是标签并不是显而易见。我们能想到3.14是π,但是最好让它更明确。
当我们设置了刻度值,我们也可以在第二个参数中列出对应的标签。注意我们用latex以便更好的渲染标签。
pl.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
pl.yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
提示:文档
脊柱是连接坐标轴刻度标记的线,记录了数据范围的边界。他们可以被放在任意的位置,到目前位置,他们被放在了坐标轴的四周。我们将改变他们,因为我们希望他们在中间。因为有四条(上下左右),我们通过设置颜色为None舍弃了顶部和右侧,并且我们将把底部和左侧的脊柱移动到数据空间坐标的零点。
ax = pl.gca() # gca stands for 'get current axis'
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
提示:文档
让我们在坐上角添加图例。这只需要在plot命里中添加关键词参数label(将被用于图例框)。
pl.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
pl.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
pl.legend(loc='upper left')
提示:文档
让我们用annotate命令标注一些有趣的点。我们选取值2π/3,我们想要标注sine和cosine。首先我们在曲线上画出了一个垂直的散点标记线。然后,我们将用annotate命令显示带有剪头的文字。
t = 2 * np.pi / 3
pl.plot([t, t], [0, np.cos(t)], color='blue', linewidth=2.5, linestyle="--")
pl.scatter([t, ], [np.cos(t), ], 50, color='blue')
pl.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
pl.plot([t, t],[0, np.sin(t)], color='red', linewidth=2.5, linestyle="--")
pl.scatter([t, ],[np.sin(t), ], 50, color='red')
pl.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
提示:文档
因为蓝色和红色的线,刻度标签很难看到。我们可以让他们更大一些,也可以调整他们的属性以便他们被处理为半透明的白色背景。这样我们就可以同时看到数据和标签。
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(16)
label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65))
在matplotlib中“图形”是用户界面中的整个窗口。在这个图形中可以有“子图”。
到目前为止,我们已经使用图形和创建数轴。这对于快速绘图是非常方便的。使用图形、子图和轴我们可以控制显示。尽管子图将图表放在标准的网格中,轴可以在图形中放在任意位置。根据你的目的不同,二者都非常有用。我们也在没有显式的调用图形和子图时使用了他们。当我们调用plot时,matplotlib调用gca()
来获得当前的坐标轴,相应的调用gcf()
获得当前的图形。如果没有当前图形,那么将调用figure()
去创建一个,严格来说是创建一个`subplot(111)。让我们来详细看一下。
图形是在GUI中的窗口,标题是"Figure #"。图形的标号从1开始,而不是常规的Python方式从0开始。这明显是MATLAB-风格。这些参数决定图形的外观:
参数 | 默认值 | 描述 |
---|---|---|
num | 1 | 图形编号 |
figsize | figure.figsize | 以英寸表示的图形大小(宽、高) |
dpi | figure.dpi | 分辨率以每英寸点数表示 |
facecolor | figure.facecolor | 背景色 |
edgecolor | figure.edgecolor | 背景边缘色 |
frameon | True | 是否绘制框架 |
默认值可以在资源文件中指明,并在绝大数时间使用。只有图形数经常被改变。
与其他对象类似,你可以用setp或者set_something方法设置图形属性。
当你使用GUI工作时,你可以点击右上的X关闭图形。但是,你可以通过调用close用程序关闭图形。根据参数关闭不同内容(1)当前图形(没有参数),(2)特定图形(用图形编号或图形实例做参数),(3)所有图形("all"作为参数)。
pl.close(1) # Closes figure 1
用子图你可以将图片放置在标准方格中。你需要指定行列数和图片数。 注意gridspec命令相对更加高级。
轴与子图非常类似,不过允许图形放在图片的任意位置。因此,如果我们想要将一个小图形放在一个更大图形中,我们可以用轴。
格式良好的刻度是准备好发布图片的必要部分。Matplotlib提供了一个完全可控的刻度系统。有刻度位置来指定刻度该出现在哪,还有刻度格式来给出你想要的刻度外观。主刻度和子刻度可以被独立放置和整理格式。之前子刻度默认是不显示的,即他们只有空列表,因为它是NullLocator
(见下面)。
刻度位置可以控制的位置。它的设置如下:
ax = pl.gca()
ax.xaxis.set_major_locator(eval(locator))
不同的需求有多种位置:
所有这些位置都可以从基础类matplotlib.ticker.Locator衍生出来。你可以从中衍生出你自己的位置。将日期处理为刻度特别困哪。因此,matplotlib
提供了特殊的位置matplotlib.dates
。
提示:你可以使用fill_between命令。
从下面的代码开始,试着重新生成这个图片,小心处理填充区域:
n = 256
X = np.linspace(-np.pi, np.pi, n, endpoint=True)
Y = np.sin(2 * X)
pl.plot(X, Y + 1, color='blue', alpha=1.00)
pl.plot(X, Y - 1, color='blue', alpha=1.00)
点击图片查看答案。
提示:颜色根据角度进行分配
从下面的代码开始,试着重新生成这个图片,小心处理标记的大小颜色和透明度:
n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
pl.scatter(X,Y)
点击图片查看答案。
提示:你需要小心文本对齐
从下面的代码开始,试着重新生成这个图片,添加红柱的标签。
n = 12
X = np.arange(n)
Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
pl.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
pl.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
for x, y in zip(X, Y1):
pl.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va='bottom')
pl.ylim(-1.25, +1.25)
点击图片查看答案。
提示:你需要是使用clabel命令。
从下面的代码开始,试着重新生成这个图片,小心处理colormap (见下面的Colormaps)。
def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 -y ** 2)
n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X, Y = np.meshgrid(x, y)
pl.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap='jet')
C = pl.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)
点击图片查看答案。
提示:你需要小心处理在imshow命令中的图像原点并使用colorbar
从下面的代码开始,试着重新生成这个图片,小心处理colormap和图像插入以及原点。
def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
n = 10
x = np.linspace(-3, 3, 4 * n)
y = np.linspace(-3, 3, 3 * n)
X, Y = np.meshgrid(x, y)
pl.imshow(f(X, Y))
点击图片查看答案。
提示:你需要调整Z。
从下面的代码开始,试着重新生成这个图片,小心处理颜色和切片大小。
Z = np.random.uniform(0, 1, 20)
pl.pie(Z)
点击图片查看答案。
提示:你需要绘制两次箭头。
从下面的代码开始,试着重新生成这个图片,小心处理颜色和方向。
n = 8
X, Y = np.mgrid[0:n, 0:n]
pl.quiver(X, Y)
点击图片查看答案。
从下面的代码开始,试着重新生成这个图片,小心处理线的样式。
axes = pl.gca()
axes.set_xlim(0, 4)
axes.set_ylim(0, 3)
axes.set_xticklabels([])
axes.set_yticklabels([])
点击图片查看答案。
提示:你可以用不同的分割来使用多个子图。
pl.subplot(2, 2, 1)
pl.subplot(2, 2, 3)
pl.subplot(2, 2, 4)
点击图片查看答案。
提示:你只需要修改axes
行。
从下面的代码开始,试着重新生成这个图片。
pl.axes([0, 0, 1, 1])
N = 20
theta = np.arange(0., 2 * np.pi, 2 * np.pi / N)
radii = 10 * np.random.rand(N)
width = np.pi / 4 * np.random.rand(N)
bars = pl.bar(theta, radii, width=width, bottom=0.0)
for r, bar in zip(radii, bars):
bar.set_facecolor(cm.jet(r / 10.))
bar.set_alpha(0.5)
点击图片查看答案。
提示:你需要使用contourf
从下面的代码开始,试着重新生成这个图片。
from mpl_toolkits.mplot3d import Axes3D
fig = pl.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
点击图片查看答案。
更多请见:用Mayavi 3D绘图
提示:看一下matplotlib标识
试着从0开始做这个事情!
点击图片查看答案。
快速阅读
如果你想要快速看一下Scipy讲座以便了解生态系统,你可以直接跳到下一章:Scipy:高级科学计算。
本章的剩余部分对理解其他的介绍部分不是必须的。但是,请确保在稍后回来完成这个章节。
Matplotlib从大量的文档以及用户和开发者社区中收益匪浅。这里是一些有趣的链接:
代码都有很好的文档,你可以在Python会话中用特定命令很快的访问:
import pylab as pl
help(pl.plot)
Help on function plot in module matplotlib.pyplot:
plot(*args, **kwargs)
Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::
plot(x, y) # plot x and y using default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.
An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
By default, each line is assigned a different color specified by a
'color cycle'. To change this behavior, you can edit the
axes.color_cycle rcParam.
The following format string characters are accepted to control
the line style or marker:
================ ===============================
character description
================ ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
================ ===============================
The following color abbreviations are supported:
========== ========
character color
========== ========
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
========== ========
In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.
Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.
The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
You do not need to use format strings, which are just
abbreviations. All of the line properties can be controlled
by keyword arguments. For example, you can set the color,
marker, linestyle, and markercolor with::
plot(x, y, color='green', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=12).
See :class:`~matplotlib.lines.Line2D` for details.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
agg_filter: unknown
alpha: float (0.0 transparent through 1.0 opaque)
animated: [True | False]
antialiased or aa: [True | False]
axes: an :class:`~matplotlib.axes.Axes` instance
clip_box: a :class:`matplotlib.transforms.Bbox` instance
clip_on: [True | False]
clip_path: [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ]
color or c: any matplotlib color
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post']
figure: a :class:`matplotlib.figure.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none']
gid: an id string
label: string or anything printable with '%s' conversion.
linestyle or ls: [``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``]
linewidth or lw: float value in points
lod: [True | False]
marker: unknown
markeredgecolor or mec: any matplotlib color
markeredgewidth or mew: float value in points
markerfacecolor or mfc: any matplotlib color
markerfacecoloralt or mfcalt: any matplotlib color
markersize or ms: float
markevery: unknown
path_effects: unknown
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: [True | False | None]
sketch_params: unknown
snap: unknown
solid_capstyle: ['butt' | 'round' | 'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string
visible: [True | False]
xdata: 1D array
ydata: 1D array
zorder: any number
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
Additional kwargs: hold = [True|False] overrides default hold state
当你搜索如何提供一个特定图片时,matplotlib画廊也非常有用。每个例子都有源码。
这里有一个小的画廊。
最后,你可以在用户邮件列表寻求帮助,而开发者邮件列表则更偏技术。
这里是一组表格,显示了主要的属性和样式。
属性 | 描述 | 外观 |
---|---|---|
alpha (or a) | alpha 0-1范围的透明度 | |
antialiased | True or False - use antialised rendering | |
color (or c) | matplotlib颜色参数 | |
linestyle (or ls) | see Line属性 | |
linewidth (or lw) | 浮点, 线宽度用小数表示 | |
solid_capstyle | 实线头的样式 | |
solid_joinstyle | 实线的连接样式 | |
dash_capstyle | 虚线头的样式 | |
dash_joinstyle | 虚线的连接样式 | |
marker | see 标记 | |
markeredgewidth (mew) | 标记符号的线宽度 | |
markeredgecolor (mec) | 标记边缘的颜色 | |
markerfacecolor (mfc) | 标记的填充颜色 | |
markersize (ms) | 标记的大小,以小数表示 |
所有colormap都可以通过添加_r
来进行颜色反转。例如gray_r
是gray
的补色。
如果你想要更多了解colormaps,检查一下matplotlib colormaps的文档