IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    [转]sqoop-1.4.6使用指南

    wonder4发表于 2016-09-13 20:13:00
    love 0

    1. sqoop-1.4.6.jar

    第一步先将sqoop jar包拷贝至Hadoop的mapreduce目录下:

    cp $SQOOP_HOME/sqoop-1.4.6.jar $HADOOP/share/hadoop/mapreduce/

    2. JDBC jar包

    第二步将Oracle和MySQL分别需要用到的jar包拷贝至$SQOOP_HOME/lib下

    cp ojdbc6.jar $SQOOP_HOME/lib/
    cp mysql-connector-java-5.1.38-bin.jar $SQOOP_HOME/lib/

    2. 导入

    1. 从RDB导入表数据至HDFS

    1. Oracle

    从Oracle数据库的Schema为pdbORCL中导入表PUB_DATE_D

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM -password 123456 --table PUB_DATE_D --warehouse-dir /user/nanyue/oracletest -m 1

    此时会在/user/nanyue/下生成目录为oracletest的目录,且表中的数据均在这个目录下,字段之间以逗号(,)作为分隔符。

    2. MySQL

    如果不指定目录,默认文件导入到/user/nanyue下,指定目录用–warehouse-dir或–target-dir

    sqoop import --connect jdbc:mysql://mysql:3306/taobao --username root --password 123456 --table we --warehouse-dir /mytargetdir -m 1

    2. 从RDB导入表数据至Hive

    1. Oracle

    从Oracle中导入表数据至Hive中的default数据库,并直接创建该表(即原本此表结构在hive中是不存在的)

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM -password 123456 --table PUB_DATE_D --hive-import --hive-database default --create-hive-table -m 1

    通过这种方式导入的数据在hive中生成的数据内容(HDFS文件)以hive中的默认分隔符进行字段分隔;

    2. MySQL

    当表在Hive不存在时,添加–create-hive-table则在指定数据库中添加同名表

    sqoop import --connect jdbc:mysql://mysql:3306/taobao --username root --password 123456 --table we --hive-import --hive-database default --create-hive-table -m 1

    3. 导入全部表

    如果要导入某一个数据库的所有表,可以直接执行一次命令即可,如下:

    sqoop import-all-tables --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --hive-import --hive-database oracle -m 1

    如果在导入所有表中的绝大多数表,则可以用参数–exclude-tables排除不需要导入的表(多表以逗号分隔)即可。

    4. 空值的处理

    默认情况下,如果RDB中存在空值,则导入时用字符串常量null(小写)代替所有空值。此种处理方式并不符合大多数的空值处理要求。而Sqoop提供了2个参数以供处理空值: 
    其中null-string用于处理数据库中文本类型的字段,null-non-string用于处理非文本类型的字段

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table PUB_DATE_D --where "QUARTER_NAME<'Q2'" --hive-import --hive-database default --null-string '\\N' --null-non-string '\\N'

    3. 增量导入

    1. 导入新数据

    RDB中的数据库表中的数据仅附加,不做修改(append模式),需要有一个检查字段,和此字段中导入的最后值,则利用以下3个参数进行增量导入,导入id字段中值大于2的数据记录:(这种方式不能导入已有数据的更新记录),每次导入会打印出这3个参数的值。 
    导入至Hive暂时不支持append模式,所以需要使用导入至HDFS的方式进行。

    --incremental append
    --check-column id
    --last-value 2

    具体示例:

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table WE --warehouse-dir /user/hive/warehouse/ --null-string '\\N' --null-non-string '\\N' --incremental append --check-column ID --last-value 4

    2. 导入更新数据

    导入更新数据时使用lastmodified模式,每次导入会打印出这3个参数的值。这种模式要求标识字段必须是日期值(适合类型有date,time,datetime,timestamp)

    --incremental lastmodified
    --check-column last_update_date
    --last-value "2016-04-14 19:11:20"

    更新数据是指在数据表中发生变化的数据,指定一个标识字段,并指定一个更新值,当目的路径已存在该目录时,需要添加一个–append或–merge-key。

    下列命令将导出表WE中字段LT的值>’2016-04-13 19:11:10’且<’当前系统时间’的所有数据记录,不同之处在于–append参数表示根据更新要求直接将抽取出来的数据附加至目标目录,而–merge-key参数则表示此更新操作将分成2个MR Job,Job1将表中的更新数据导入到HDFS中一个临时目录下,Job2将结合新数据和已经存在HDFS上的旧数据按照merge-key指定的字段进行合并(类似于去重),并输出到目标目录,每一行仅保留最新的值。 
    此模式支持导入至Hive表,但是即便使用了merge-key参数也无法使新数据和旧数据进行合并去重 
    示例1:

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table WE --warehouse-dir /user/hive/warehouse/ --null-string '\\N' --null-non-string '\\N' --incremental lastmodified --check-column LT --last-value '2016-04-13 19:11:10' --append

    示例2:

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table WE --warehouse-dir /user/hive/warehouse/ --null-string '\\N' --null-non-string '\\N' --incremental lastmodified --check-column LT --last-value '2016-04-13 19:11:10' --merge-key ID

    3. 导入数据表的子集(可看做增量导入)

    下列实例仅导入QUARTER_NAME为Q3和Q4的数据(按天增量时,可考虑按照某个日期字段或时间字段取子集)

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM -password research --table PUB_DATE_D --where "QUARTER_NAME>='Q3'" --hive-import --hive-database default

    4. 保存上次导入的值

    无论incremental是append模式还是lastmodified模式,都需要指定标识字段和上次更新值,如果手动写命令更新导入,则需要记录每一次的导入后打印的值,如下:

    16/04/12 19:25:10 INFO tool.ImportTool:  --incremental append
    16/04/12 19:25:10 INFO tool.ImportTool: --check-column ID
    16/04/12 19:25:10 INFO tool.ImportTool: --last-value 5

    可以利用sqoop metastore保存导入导出的参数及其值

    1. 创建sqoop job
    sqoop job --create test -- import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table WE --hive-import --hive-table we1 --incremental lastmodified --check-column LT --last-value '2016-04-13 19:11:10' --merge-key ID
    1. 执行sqoop job
    sqoop job --exec test

    每次执行sqoop job test,sqoop metastore会保存此次job中last-value的最新值(即每次执行的系统时间),无需手动人工记住,以便于自动增量导入。


    增量导入总结

    1. Sqoop 1.4.6支持的增量导入方式只有append附加新数据记录和lastmodified新增修改数据两种,其中append不支持导入至Hive,而lastmodifed支持导入至Hive。
    2. 在自动化导入中,务必使用sqoop job的方式,在crontab中写入,并导出日志信息。

    3. 密码保护(非命令行密码显示输入)

    在上述的所有示例中是直接用password参数指定密码,可以通过以下两种方式进行密码保护。

    1. -P 
      这种方式是使用-P参数替代-password,但这种方式在运行命令之后必须手动输入密码。
    2. –password-file filename 
      这种方式是事先将密码写入文件filename(此文件必须在HDFS上),然后通过–password-file进行读取 
      先创建文件并上传到HDFS中,并将读写权限设置为400:
    echo 'research' > sqoop.pwd
    hdfs dfs -put sqoop.pwd /user/nanyue/
    hdfs dfs -chmod 400 /user/nanyue/sqoop.pwd
    rm -rf sqoop.pwd

    导入测试

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table PUB_DATE_D --where "QUARTER_NAME<'Q2'" --hive-import --hive-database default

    4. 压缩

    sqoop默认支持压缩,其默认的压缩格式是gzip,直接在sqoop import命令末尾添加–compress即可执行默认压缩,也可以使用–compression-codec参数指定压缩格式,例如下面示例为指定bzip2压缩格式。

    sqoop import --connect jdbc:oracle:thin:@//myoracle:1521/pdbORCL --username DM --password-file sqoop.pwd --table PUB_DATE_D --where "QUARTER_NAME<'Q2'" --hive-import --hive-database default --compress --compression-codec org.apache.hadoop.io.compress.BZip2Codec

    5. 关于Hive版本

    上述操作在以下版本中都可以顺利执行:

    • Hadoop 2.7.2
    • Hive 1.2.1
    • Sqoop 1.4.6

    当我将Hive替换成2.0时,会包缺包的错误,此时,从Hive中拷贝一些包到$SQOOP_HOME/lib下即可。

    cp $HIVE_HOME/lib/log4j-1.2-api-2.4.1.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/log4j-api-2.4.1.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/log4j-core-2.4.1.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/antlr-2.7.7.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/antlr4-runtime-4.5.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/antlr-runtime-3.4.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/calcite-avatica-1.5.0.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/calcite-core-1.5.0.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/calcite-linq4j-1.5.0.jar $SQOOP_HOME/lib/
    cp $HIVE_HOME/lib/hive-cli-2.0.0.jar $SQOOP_HOME/lib/


沪ICP备19023445号-2号
友情链接