作者:Adit Deshpande
Part1: A Beginner’s Guide To Understanding Convolutional Neural Networks
Part2: A Beginner’s Guide To Understanding Convolutional Neural Networks Part 2
Part3: The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)
编者按:比较完善的CNN入门文档,第一部分介绍CNN基本概念,第二部分介绍CNN相关的技术细节,比如:Pooling、ReLU、Dropout等,第三部分CNN、R-CNN系列、GAN等经典的9篇论文。
Part1目录
- Introduction
- The Problem Space
- Inputs and Outputs
- What We Want the Computer to Do
- Biological Connection
- Structure
- First Layer – Math Part
- First Layer – High Level Perspective
- Going Deeper Through the Network
- Fully Connected Layer
- Training (AKA:What Makes this Stuff Work)
- Testing
- How Companies Use CNNs
Part2目录
- Introduction
- Stride and Padding
- Choosing Hyperparameters
- ReLU (Rectified Linear Units) Layers
- Pooling Layers
- Dropout Layers
- Network in Network Layers
- Classification, Localization, Detection, Segmentation
- Transfer Learning
- Data Augmentation Techniques
Part3目录
- AlexNet (2012)
- ZF Net (2013)
- VGG Net (2014)
- GoogLeNet (2015)
- Microsoft ResNet (2015)
- Region Based CNNs (R-CNN – 2013, Fast R-CNN – 2015, Faster R-CNN – 2015)
- Generative Adversarial Networks (2014)
- Generating Image Descriptions (2014)
- Spatial Transformer Networks (2015)