IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    Stat212b: Topics Course on Deep Learning

    我爱机器学习(52ml.net)发表于 2016-10-10 14:49:23
    love 0

    来源:https://joanbruna.github.io
    原文:Stat212b: Topics Course on Deep Learning

    来自Berkeley统计系的Deep Learning课程,偏数学、统计一些。
    讲师:by Joan Bruna, UC Berkeley, Stats Department
    时间:Spring 2016

    Detailed Syllabus and Lectures

    • Lec1: Intro and Logistics
    • Lec2: Representations for Recognition : stability, variability. Kernel approaches / Feature extraction.
      • Elements of Statistical Learning, chapt. 12, Hastie, Tibshirani, Friedman.
    • Lec3: Groups, Invariants and Filters.
      • Learning Stable Group Invariant Representations with Convolutional Networks
      • Understanding Deep Convolutional Networks, S. Mallat.
      • A Wavelet Tour of Signal Processing, chapt 2-5,7, S. Mallat.
    • Lec4: Scattering Convolutional Networks.
      • Invariant Scattering Convolutional Networks

      further reading

      • Group Invariant Scattering, S. Mallat
      • Scattering Representations for Recognition
    • Lec5: Further Scattering: Properties and Extensions.
      • Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination, Sifre & Mallat.
    • Lec6: Convolutional Neural Networks: Geometry and first Properties.
      • Deep Learning Y. LeCun, Bengio & Hinton.
      • Understanding Deep Convolutional Networks, S. Mallat.
    • Lec7: Properties of learnt CNN representations: Covariance and Invariance, redundancy, invertibility.
      • Deep Neural Networks with Random Gaussian Weights: A universal Classification Strategy?, R. Giryes, G. Sapiro, A. Bronstein.
      • Intriguing Properties of Neural Networks C. Szegedy et al.
      • Geodesics of Learnt Representations O. Henaff & E. Simoncelli.
      • Inverting Visual Representations with Convolutional Networks, A. Dosovitskiy, T. Brox.
      • Visualizing and Understanding Convolutional Networks M. Zeiler, R. Fergus.
    • Lec8: Connections with other models (Dict. Learning, Random Forests)
      • Proximal Splitting Methods in Signal Processing Combettes & Pesquet.
      • A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems Beck & Teboulle
      • Learning Fast Approximations of Sparse Coding K. Gregor & Y. LeCun
      • Task Driven Dictionary Learning J. Mairal, F. Bach, J. Ponce
      • Exploiting Generative Models in Discriminative Classifiers T. Jaakkola & D. Haussler
      • Improving the Fisher Kernel for Large-Scale Image Classification F. Perronnin et al.
      • NetVLAD R. Arandjelovic et al.
    • Lec9: Other high level tasks: localization, regression, embedding, inverse problems.
      • Object Detection with Discriminatively Trained Deformable Parts Model Felzenswalb, Girshick, McAllester and Ramanan, PAMI’10
      • Deformable Parts Models are Convolutional Neural Networks, Girshick, Iandola, Darrel and Malik, CVPR’15.
      • Rich Feature Hierarchies for accurate object detection and semantic segmentationGirshick, Donahue, Darrel and Malik, PAMI’14.
      • Graphical Models, message-passing algorithms and convex optimization M. Wainwright.
      • Conditional Random Fields as Recurrent Neural Networks Zheng et al, ICCV’15
      • Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation Tompson, Jain, LeCun and Bregler, NIPS’14.
    • Lec10: Extensions to non-Euclidean domain. Representations of stationary processes. Properties.
      • Dimensionality Reduction by Learning an Invariant Mapping Hadsell, Chopra, LeCun,’06.
      • Deep Metric Learning via Lifted Structured Feature Embedding Oh Song, Xiang, Jegelka, Savarese,’15.
      • Spectral Networks and Locally Connected Networks on Graphs Bruna, Szlam, Zaremba, LeCun,’14.
      • Spatial Transformer Networks Jaderberg, Simonyan, Zisserman, Kavukcuoglu,’15.
      • Intermittent Process Analysis with Scattering Moments Bruna, Mallat, Bacry, Muzy,’14.
    • Lec11: Guest Lecture ( W. Zaremba, OpenAI ) Discrete Neural Turing Machines.
    • Lec12: Representations of Stationary Processes (contd). Sequential Data: Recurrent Neural Networks.
      • Intermittent Process Analysis with Scattering Moments J.B., Mallat, Bacry and Muzy, Annals of Statistics,’13.
      • A mathematical motivation for complex-valued convolutional networks Tygert et al., Neural Computation’16.
      • Texture Synthesis Using Convolutional Neural Networks Gatys, Ecker, Betghe, NIPS’15.
      • A Neural Algorithm of Artistic Style, Gatys, Ecker, Betghe, ’15.
      • Time Series Analysis and its Applications Shumway, Stoffer, Chapter 6.
      • Deep Learning Goodfellow, Bengio, Courville,’16. Chapter 10.
    • Lec13: Recurrent Neural Networks (contd). Long Short Term Memory. Applications.
      • Deep Learning Goodfellow, Bengio, Courville,’16. Chapter 10.
      • Generating Sequences with Recurrent Neural Networks A. Graves.
      • The Unreasonable Effectiveness of Recurrent Neural Networks A. Karpathy
      • The Unreasonable effectiveness of Character-level Language Models Y. Goldberg
    • Lec14: Unsupervised Learning: Curse of dimensionality, Density estimation. Graphical Models, Latent Variable models.
      • Describing Multimedia Content Using Attention-based Encoder-Decoder Networks K. Cho, A. Courville, Y. Bengio
      • Graphical Models, Exponential Families and Variational Inference M. Wainwright, M. Jordan.
    • Lec15: Autoencoders. Variational Inference. Variational Autoencoders.
      • Graphical Models, Exponential Families and Variational Inference, chapter 3 M. Wainwright, M. Jordan.
      • Variational Inference with Stochastic Search J.Paisley, D. Blei, M.Jordan.
      • Stochastic Variational Inference M. Hoffman, D. Blei, Wang, Paisley.
      • Auto-Encoding Variational Bayes, Kingma & Welling.
      • Stochastic Backpropagation and variational inference in deep latent gaussian models D. Rezende, S. Mohamed, D. Wierstra.
    • Lec16: Variational Autoencoders (contd). Normalizing Flows. Generative Adversarial Networks.
      • Semi-supervised learning with Deep generative models Kingma, Rezende, Mohamed, Welling.
      • Importance Weighted Autoencoders Burda, Grosse, Salakhutdinov.
      • Variational Inference with Normalizing Flows Rezende, Mohamed.
      • Unsupervised Learning using Nonequilibrium Thermodynamics Sohl-Dickstein et al.
      • Generative Adversarial Networks, Goodfellow et al.
    • Lec17: Generative Adversarial Networks (contd).
      • Generative Adversarial Networks, Goodfellow et al.
      • Deep Generative Image Models using a Laplacian Pyramid of Adversarial NetworksDenton, Chintala, Szlam, Fergus.
      • Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Radford, Metz, Chintala.
    • Lec18: Maximum Entropy Distributions. Self-supervised models (analogies, video prediction, text, word2vec).
      • Graphical Models, Exponential Families and Variational Inference, chapter 3 M. Wainwright, M. Jordan.
      • An Introduction to MCMC for Machine Learning Andrieu, de Freitas, Doucet, Jordan.
      • Stochastic relaxation, Gibbs distributions and the Bayesian Restoration of Images Geman & Geman.
      • Distributed Representations of Words and Phrases and their compositionality Mikolov et al.
      • word2vec Explained: deriving Mikolov et al’s negative-sampling embedding methodGoldberg & Levy.
    • Lec19: Self-supervised models (contd). Non-convex Optimization. Stochastic Optimization.
      • Pixel Recurrent Neural Networks A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu.
      • The tradeoffs of Large Scale Learning Bottou, Bousquet.
      • Introduction to Statistical Learning Theory Bousquet, Boucheron, Lugosi.
    • Lec20: Guest Lecture (S. Chintala, Facebook AI Research), “The Adversarial Network Nonsense”.
    • Lec21: Accelerated Gradient Descent, Regularization, Dropout.
      • Convex Optimization: Algorithms and Complexity S. Bubeck
      • Optimization, Simons Big Data Boot Camp B. Recht
      • The Zen of Gradient Descent M. Hardt.
      • Train Faster, Generalize Better: Stability of Stochastic Gradient Descent M. Hardt, B. Recht, Y. Singer.
      • Dropout: a simple way to prevent neural networks from Overfitting Srivastava, Hinton et al.
    • Lec22: Dropout (contd). Batch Normalization, Tensor Decompositions.
      • Dropout Training as Adaptive Regularization Wager, Wang, Liang.
      • Batch Normalization: accelerating Deep Network Training by Reducing internal covariate shift Ioffe, Szegedy.
      • Global Optimality in Tensor Factorization, Deep Learning and Beyond Haefflele, Vidal.
    • Lec23 Guest Lecture (Yann Dauphin, Facebook AI Research), “Optimizing Deep Nets”.
    • Lec24: Tensor Decompositions (contd), Spin Glasses.
      • On the expressive power of Deep Learning: a tensor analysis Cohen, Sharir, Shashua.
      • Beating the Perils of non-convexity: Guaranteed Training of Neural Networks using Tensor methods Janzamin, Sedghi, Anandkumar.
      • The Loss Surfaces of Multilayer Networks Choromaska, Henaff, Mathieu, Ben Arous, LeCun.


沪ICP备19023445号-2号
友情链接