IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    [转][转]最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现

    heiyeshuwu发表于 2016-10-21 14:28:23
    love 0



    最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

    Dijkstra算法

    ———————————
    最后更新时间:2011.9.25
    ———————————
    Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

    Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

    其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

    初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

    例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

    Dijkstra算法的迭代过程:

    主题好好理解上图!

    以下是具体的实现(C/C++):

    /***************************************
    * About:    有向图的Dijkstra算法实现
    * Author:   Tanky Woo
    * Blog:     www.WuTianQi.com
    ***************************************/
     
    #include <iostream>
    using namespace std;
     
    const int maxnum = 100;
    const int maxint = 999999;
     
    // 各数组都从下标1开始
    int dist[maxnum];     // 表示当前点到源点的最短路径长度
    int prev[maxnum];     // 记录当前点的前一个结点
    int c[maxnum][maxnum];   // 记录图的两点间路径长度
    int n, line;             // 图的结点数和路径数
     
    // n -- n nodes
    // v -- the source node
    // dist[] -- the distance from the ith node to the source node
    // prev[] -- the previous node of the ith node
    // c[][] -- every two nodes' distance
    void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
    {
    	bool s[maxnum];    // 判断是否已存入该点到S集合中
    	for(int i=1; i<=n; ++i)
    	{
    		dist[i] = c[v][i];
    		s[i] = 0;     // 初始都未用过该点
    		if(dist[i] == maxint)
    			prev[i] = 0;
    		else
    			prev[i] = v;
    	}
    	dist[v] = 0;
    	s[v] = 1;
     
    	// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
    	// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
             // 注意是从第二个节点开始,第一个为源点
    	for(int i=2; i<=n; ++i)
    	{
    		int tmp = maxint;
    		int u = v;
    		// 找出当前未使用的点j的dist[j]最小值
    		for(int j=1; j<=n; ++j)
    			if((!s[j]) && dist[j]<tmp)
    			{
    				u = j;              // u保存当前邻接点中距离最小的点的号码
    				tmp = dist[j];
    			}
    		s[u] = 1;    // 表示u点已存入S集合中
     
    		// 更新dist
    		for(int j=1; j<=n; ++j)
    			if((!s[j]) && c[u][j]<maxint)
    			{
    				int newdist = dist[u] + c[u][j];
    				if(newdist < dist[j])
    				{
    					dist[j] = newdist;
    					prev[j] = u;
    				}
    			}
    	}
    }
     
    // 查找从源点v到终点u的路径,并输出
    void searchPath(int *prev,int v, int u)
    {
    	int que[maxnum];
    	int tot = 1;
    	que[tot] = u;
    	tot++;
    	int tmp = prev[u];
    	while(tmp != v)
    	{
    		que[tot] = tmp;
    		tot++;
    		tmp = prev[tmp];
    	}
    	que[tot] = v;
    	for(int i=tot; i>=1; --i)
    		if(i != 1)
    			cout << que[i] << " -> ";
    		else
    			cout << que[i] << endl;
    }
     
    int main()
    {
    	freopen("input.txt", "r", stdin);
    	// 各数组都从下标1开始
     
    	// 输入结点数
    	cin >> n;
    	// 输入路径数
    	cin >> line;
    	int p, q, len;          // 输入p, q两点及其路径长度
     
    	// 初始化c[][]为maxint
    	for(int i=1; i<=n; ++i)
    		for(int j=1; j<=n; ++j)
    			c[i][j] = maxint;
     
    	for(int i=1; i<=line; ++i)  
    	{
    		cin >> p >> q >> len;
    		if(len < c[p][q])       // 有重边
    		{
    			c[p][q] = len;      // p指向q
    			c[q][p] = len;      // q指向p,这样表示无向图
    		}
    	}
     
    	for(int i=1; i<=n; ++i)
    		dist[i] = maxint;
    	for(int i=1; i<=n; ++i)
    	{
    		for(int j=1; j<=n; ++j)
    			printf("%8d", c[i][j]);
    		printf("\n");
    	}
     
    	Dijkstra(n, 1, dist, prev, c);
     
    	// 最短路径长度
    	cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
     
    	// 路径
    	cout << "源点到最后一个顶点的路径为: ";
    	searchPath(prev, 1, n);
    }

    输入数据:
    5
    7
    1 2 10
    1 4 30
    1 5 100
    2 3 50
    3 5 10
    4 3 20
    4 5 60
    输出数据:
    999999 10 999999 30 100
    10 999999 50 999999 999999
    999999 50 999999 20 10
    30 999999 20 999999 60
    100 999999 10 60 999999
    源点到最后一个顶点的最短路径长度: 60
    源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

    最后给出两道题目练手,都是直接套用模版就OK的:
    1.HDOJ 1874 畅通工程续
    http://www.wutianqi.com/?p=1894

    2.HDOJ 2544 最短路
    http://www.wutianqi.com/?p=1892

    来源:http://www.wutianqi.com/?p=1890



    Dijkstra算法(单源最短路径)



                                   Dijkstra算法(单源最短路径)

          单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

    一.最短路径的最优子结构性质

       该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

       假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

    二.Dijkstra算法

       由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

    假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

    1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

    2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

    3.知道U=V,停止。

    代码实现:

    复制代码
    /*Dijkstra求单源最短路径 2010.8.26*/
     
    #include <iostream>
    #include<stack>
    #define M 100
    #define N 100
    using namespace std;
    
    typedef struct node
    {
        int matrix[N][M];      //邻接矩阵 
        int n;                 //顶点数 
        int e;                 //边数 
    }MGraph; 
    
    void DijkstraPath(MGraph g,int *dist,int *path,int v0)   //v0表示源顶点 
    {
        int i,j,k;
        bool *visited=(bool *)malloc(sizeof(bool)*g.n);
        for(i=0;i<g.n;i++)     //初始化 
        {
            if(g.matrix[v0][i]>0&&i!=v0)
            {
                dist[i]=g.matrix[v0][i];
                path[i]=v0;     //path记录最短路径上从v0到i的前一个顶点 
            }
            else
            {
                dist[i]=INT_MAX;    //若i不与v0直接相邻,则权值置为无穷大 
                path[i]=-1;
            }
            visited[i]=false;
            path[v0]=v0;
            dist[v0]=0;
        }
        visited[v0]=true;
        for(i=1;i<g.n;i++)     //循环扩展n-1次 
        {
            int min=INT_MAX;
            int u;
            for(j=0;j<g.n;j++)    //寻找未被扩展的权值最小的顶点 
            {
                if(visited[j]==false&&dist[j]<min)
                {
                    min=dist[j];
                    u=j;        
                }
            } 
            visited[u]=true;
            for(k=0;k<g.n;k++)   //更新dist数组的值和路径的值 
            {
                if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])
                {
                    dist[k]=min+g.matrix[u][k];
                    path[k]=u; 
                }
            }        
        }    
    }
    
    void showPath(int *path,int v,int v0)   //打印最短路径上的各个顶点 
    {
        stack<int> s;
        int u=v;
        while(v!=v0)
        {
            s.push(v);
            v=path[v];
        }
        s.push(v);
        while(!s.empty())
        {
            cout<<s.top()<<" ";
            s.pop();
        }
    } 
    
    int main(int argc, char *argv[])
    {
        int n,e;     //表示输入的顶点数和边数 
        while(cin>>n>>e&&e!=0)
        {
            int i,j;
            int s,t,w;      //表示存在一条边s->t,权值为w
            MGraph g;
            int v0;
            int *dist=(int *)malloc(sizeof(int)*n);
            int *path=(int *)malloc(sizeof(int)*n);
            for(i=0;i<N;i++)
                for(j=0;j<M;j++)
                    g.matrix[i][j]=0;
            g.n=n;
            g.e=e;
            for(i=0;i<e;i++)
            {
                cin>>s>>t>>w;
                g.matrix[s][t]=w;
            }
            cin>>v0;        //输入源顶点 
            DijkstraPath(g,dist,path,v0);
            for(i=0;i<n;i++)
            {
                if(i!=v0)
                {
                    showPath(path,i,v0);
                    cout<<dist[i]<<endl;
                }
            }
        }
        return 0;
    }
    复制代码

      测试数据:

      

      运行结果:

      

    作者:海子
        
    出处:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html




    最短路径—Dijkstra算法和Floyd算法



    注意:以下代码 只是描述思路,没有测试过!!

     

    Dijkstra算法

    1.定义概览

    Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

    问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

     

    2.算法描述

    1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

    2)算法步骤:

    a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

    b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

    c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

    d.重复步骤b和c直到所有顶点都包含在S中。

     

    执行动画过程如下图

     

    3.算法代码实现:

     

    复制代码
    const int  MAXINT = 32767;
    const int MAXNUM = 10;
    int dist[MAXNUM];
    int prev[MAXNUM];
    
    int A[MAXUNM][MAXNUM];
    
    void Dijkstra(int v0)
    {
        bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中
          int n=MAXNUM;
        for(int i=1; i<=n; ++i)
        {
            dist[i] = A[v0][i];
            S[i] = false;                                // 初始都未用过该点
            if(dist[i] == MAXINT)    
                  prev[i] = -1;
            else 
                  prev[i] = v0;
         }
         dist[v0] = 0;
         S[v0] = true;   
        for(int i=2; i<=n; i++)
        {
             int mindist = MAXINT;
             int u = v0;                               // 找出当前未使用的点j的dist[j]最小值
             for(int j=1; j<=n; ++j)
                if((!S[j]) && dist[j]<mindist)
                {
                      u = j;                             // u保存当前邻接点中距离最小的点的号码 
                      mindist = dist[j];
                }
             S[u] = true; 
             for(int j=1; j<=n; j++)
                 if((!S[j]) && A[u][j]<MAXINT)
                 {
                     if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  
                     {
                         dist[j] = dist[u] + A[u][j];    //更新dist 
                         prev[j] = u;                    //记录前驱顶点 
                      }
                  }
         }
    }
    复制代码

     

    4.算法实例

    先给出一个无向图

    用Dijkstra算法找出以A为起点的单源最短路径步骤如下

     

    Floyd算法

    1.定义概览

    Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

     

    2.算法描述

    1)算法思想原理:

         Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

          从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

    2).算法描述:

    a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

    b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

    3).Floyd算法过程矩阵的计算----十字交叉法

    方法:两条线,从左上角开始计算一直到右下角 如下所示

    给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

    相应计算方法如下:

    最后A3即为所求结果

     

    3.算法代码实现

    复制代码
    typedef struct          
    {        
        char vertex[VertexNum];                                //顶点表         
        int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
        int n,e;                                               //图中当前的顶点数和边数         
    }MGraph; 
    
    void Floyd(MGraph g)
    {
       int A[MAXV][MAXV];
       int path[MAXV][MAXV];
       int i,j,k,n=g.n;
       for(i=0;i<n;i++)
          for(j=0;j<n;j++)
          {   
                 A[i][j]=g.edges[i][j];
                path[i][j]=-1;
           }
       for(k=0;k<n;k++)
       { 
            for(i=0;i<n;i++)
               for(j=0;j<n;j++)
                   if(A[i][j]>(A[i][k]+A[k][j]))
                   {
                         A[i][j]=A[i][k]+A[k][j];
                         path[i][j]=k;
                    } 
         } 
    } 
    复制代码

    算法时间复杂度:O(n3)



    文章来源:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 






沪ICP备19023445号-2号
友情链接