Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence frombeginWord to endWord, such that:
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
每个单词每次只能变动一个字母变到字典中的其他单词,问从beginword变到endword最少需要多少步?
BFS,维护一个vis,表示已经到达过的单词,这样下次可以遇到可以不用搜索。
第一次提交超时了,以为BFS写搓了,调了半天发现是判断相邻单词的步骤超时。
原来版本的相邻词判断是这样的
bool judge(string a,string b)
{
bool flag=false;
for(int i=0;i<a.size();i++)
{
if(a[i]!=b[i])
{
if(flag) return false;
flag=true;
}
}
return flag;
}
for(unordered_set<string>::iterator it=wordList.begin();it!=wordList.end();it++)
{
unordered_set<string>::iterator it2=it;
for(it2++;it2!=wordList.end();it2++)
if(judge(*it,*it2))
{
mp[*it].push_back(*it2);
mp[*it2].push_back(*it);
}
}怎么样?遍历所有单词组合判断他们是否相邻,复杂度n*n*len(word),
改成下面的做法过了,
对于每一个词,枚举每一位的变化为其他字母的情况,判断这个情况是否在集合中,复杂度n*len(word)*26*1,确实要快上一些,学到了!
class Solution {
public:
int ladderLength(string beginWord, string endWord, unordered_set<string>& wordList) {
unordered_map<string,vector<string>> mp;
wordList.insert(beginWord);
wordList.insert(endWord);
for(unordered_set<string>::iterator it=wordList.begin();it!=wordList.end();it++)
{
string cc=*it;
for(int i=0;i<cc.size();i++)
{
string c=*it;
for(char j='a';j<='z';j++)
{
c[i]=j;
if(wordList.find(c)!=wordList.end())
{
mp[*it].push_back(c);
}
}
}
}
queue<string> q,q2;
unordered_map<string,bool> vis;
q.push(beginWord);
vis[beginWord]=true;
int res=0,flag=1;
while(!q.empty() || !q2.empty())
{
if(!q.empty())
{
string temp=q.front();
q.pop();
if(temp==endWord)
{
res=flag;
break;
}
for(int i=0;i<mp[temp].size();i++)
{
string tt=mp[temp][i];
if(vis[tt]) continue;
vis[tt]=true;
q2.push(tt);
}
}
else
{
flag++;
swap(q,q2);
}
}
return res;
}
};