IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    Objc 对象的今生今世

    summer发表于 2016-10-31 07:29:07
    love 0


    前言

    在面向对象编程中,我们每天都在创建对象,用对象描述着整个世界,然而对象是如何从孕育到销毁的呢?

    目录

    • 1.孕育对象

    • 2.对象的出生

    • 3.对象的成长

    • 4.对象的销毁

    • 5.总结

    一.孕育对象

    每天开发我们都在alloc对象,而alloc方法做了些什么呢?

    + (id)alloc {
    return _objc_rootAlloc(self);
    }

    所有对象alloc都会调用这个root的方法

    id _objc_rootAlloc(Class cls)
    {
    return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
    }

    这个方法又会去调用callAlloc方法

    static ALWAYS_INLINE id callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
    {
    if (checkNil && !cls) return nil;

    #if __OBJC2__
    if (! cls->ISA()->hasCustomAWZ()) {
    // No alloc/allocWithZone implementation. Go straight to the allocator.
    // fixme store hasCustomAWZ in the non-meta class and
    // add it to canAllocFast's summary
    if (cls->canAllocFast()) {
    // No ctors, raw isa, etc. Go straight to the metal.
    bool dtor = cls->hasCxxDtor();
    id obj = (id)calloc(1, cls->bits.fastInstanceSize());
    if (!obj) return callBadAllocHandler(cls);
    obj->initInstanceIsa(cls, dtor);
    return obj;
    }
    else {
    // Has ctor or raw isa or something. Use the slower path.
    id obj = class_createInstance(cls, 0);
    if (!obj) return callBadAllocHandler(cls);
    return obj;
    }
    }
    #endif

    // No shortcuts available.
    if (allocWithZone) return [cls allocWithZone:nil];
    return [cls alloc];
    }

    由于入参 checkNil = false,所以不会返回nil。

    bool hasCustomAWZ() {
    return ! bits.hasDefaultAWZ();
    }

    在 这张图 ,我们可以看到在对象的数据段data中,class_rw_t中有一个flags。

    bool hasDefaultAWZ( ) {
    return data()->flags & RW_HAS_DEFAULT_AWZ;
    }

    #define RW_HAS_DEFAULT_AWZ (1<<16)

    RW_HAS_DEFAULT_AWZ 这个是用来标示当前的class或者是superclass是否有默认的alloc/allocWithZone:。值得注意的是,这个值会存储在metaclass 中。

    hasDefaultAWZ( )方法是用来判断当前class是否有默认的allocWithZone。

    如果cls->ISA()->hasCustomAWZ()返回YES,意味着有默认的allocWithZone方法,那么就直接对class进行allocWithZone,申请内存空间。

    if (allocWithZone) return [cls allocWithZone:nil];

    allocWithZone会去调用rootAllocWithZone

    + (id)allocWithZone:(struct _NSZone *)zone {
    return _objc_rootAllocWithZone(self, (malloc_zone_t *)zone);
    }

    接下来就仔细看看_objc_rootAllocWithZone的具体实现

    id _objc_rootAllocWithZone(Class cls, malloc_zone_t *zone)
    {
    id obj;

    #if __OBJC2__
    // allocWithZone under __OBJC2__ ignores the zone parameter
    (void)zone;
    obj = class_createInstance(cls, 0);
    #else
    if (!zone || UseGC) {
    obj = class_createInstance(cls, 0);
    }
    else {
    obj = class_createInstanceFromZone(cls, 0, zone);
    }
    #endif

    if (!obj) obj = callBadAllocHandler(cls);
    return obj;
    }

    在__OBJC2__中,直接调用class_createInstance(cls, 0);方法去创建对象。

    id class_createInstance(Class cls, size_t extraBytes)
    {
    return _class_createInstanceFromZone(cls, extraBytes, nil);
    }

    关于_class_createInstanceFromZone方法这里先不详细分析,下面再详细分析,先理清程序脉络。

    在objc的老版本中要先去看看zone是否有空间,是否用了垃圾回收,如果没有空间,或者用了垃圾回收,就会调用class_createInstance(cls, 0)方法获取对象,否则调用class_createInstanceFromZone(cls, 0, zone);获取对象。

    id class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone)
    {
    return _class_createInstanceFromZone(cls, extraBytes, zone);
    }

    可以看到,创建对象最终调用的函数都是_class_createInstanceFromZone,不管objc的版本是新版还是旧版。

    如果创建成功就返回objc,如果创建失败,就会调用callBadAllocHandler方法。

    static id callBadAllocHandler(Class cls)
    {
    // fixme add re-entrancy protection in case allocation fails inside handler
    return (*badAllocHandler)(cls);
    }

    static id(*badAllocHandler)(Class) = &defaultBadAllocHandler;

    static id defaultBadAllocHandler(Class cls)
    {
    _objc_fatal("attempt to allocate object of class '%s' failed",
    cls->nameForLogging());
    }

    创建对象失败后,最终会调用_objc_fatal输出"attempt to allocate object of class failed"创建对象失败。

    到此就完成了callAlloc中hasCustomAWZ( )返回YES的情况。那么hasCustomAWZ( )函数返回NO,情况是怎么样的呢?

    if (! cls->ISA()->hasCustomAWZ()) {
    // No alloc/allocWithZone implementation. Go straight to the allocator.
    // fixme store hasCustomAWZ in the non-meta class and
    // add it to canAllocFast's summary
    if (cls->canAllocFast()) {
    // No ctors, raw isa, etc. Go straight to the metal.
    bool dtor = cls->hasCxxDtor();
    id obj = (id)calloc(1, cls->bits.fastInstanceSize());
    if (!obj) return callBadAllocHandler(cls);
    obj->initInstanceIsa(cls, dtor);
    return obj;
    }
    else {
    // Has ctor or raw isa or something. Use the slower path.
    id obj = class_createInstance(cls, 0);
    if (!obj) return callBadAllocHandler(cls);
    return obj;
    }
    }

    这一段是hasCustomAWZ( )返回NO的情况,对应的是当前class没有默认的allocWithZone的情况。

    在没有默认的allocWithZone的情况下,还需要再次判断当前的class是否支持快速alloc。如果可以,直接调用calloc函数,申请1块bits.fastInstanceSize()大小的内存空间,如果创建失败,也会调用callBadAllocHandler函数。

    如果创建成功,就去初始化Isa指针和dtor。

    bool hasCxxDtor() {
    return data()->flags & RW_HAS_CXX_DTOR;
    }

    // class or superclass has .cxx_destruct implementation
    #define RW_HAS_CXX_DTOR (1<<17)

    dtor是用来判断当前class或者superclass是否有.cxx_destruct函数的实现。

    如果当前的class不支持快速alloc,那么就乖乖的去调用class_createInstance(cls, 0);方法去创建一个新的对象。

    小结一下:

    经过上面的一系列判断,“孕育对象”的过程最终落在了_class_createInstanceFromZone函数上了。

    static __attribute__((always_inline)) id _class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
    bool cxxConstruct = true,
    size_t *outAllocatedSize = nil)
    {
    if (!cls) return nil;

    assert(cls->isRealized());

    // Read class's info bits all at once for performance
    bool hasCxxCtor = cls->hasCxxCtor();
    bool hasCxxDtor = cls->hasCxxDtor();
    bool fast = cls->canAllocIndexed();

    size_t size = cls->instanceSize(extraBytes);
    if (outAllocatedSize) *outAllocatedSize = size;

    id obj;
    if (!UseGC && !zone && fast) {
    obj = (id)calloc(1, size);
    if (!obj) return nil;
    obj->initInstanceIsa(cls, hasCxxDtor);
    }
    else {
    #if SUPPORT_GC
    if (UseGC) {
    obj = (id)auto_zone_allocate_object(gc_zone, size,
    AUTO_OBJECT_SCANNED, 0, 1);
    } else
    #endif
    if (zone) {
    obj = (id)malloc_zone_calloc ((malloc_zone_t *)zone, 1, size);
    } else {
    obj = (id)calloc(1, size);
    }
    if (!obj) return nil;

    // Use non-indexed isa on the assumption that they might be
    // doing something weird with the zone or RR.
    obj->initIsa(cls);
    }

    if (cxxConstruct && hasCxxCtor) {
    obj = _objc_constructOrFree(obj, cls);
    }

    return obj;
    }

    ctor 和 dtor 分别是什么呢?

    bool hasCxxCtor() {
    // addSubclass() propagates this flag from the superclass.
    assert(isRealized());
    return bits.hasCxxCtor();
    }

    bool hasCxxCtor() {
    return data()->flags & RW_HAS_CXX_CTOR;
    }

    #define RW_HAS_CXX_CTOR (1<<18)

    ctor是判断当前class或者superclass 是否有.cxx_construct构造方法的实现。

    bool hasCxxDtor() {
    // addSubclass() propagates this flag from the superclass.
    assert(isRealized());
    return bits.hasCxxDtor();
    }

    bool hasCxxDtor() {
    return data()->flags & RW_HAS_CXX_DTOR;
    }

    #define RW_HAS_CXX_DTOR (1<<17)

    dtor是判断判断当前class或者superclass 是否有.cxx_destruct析构方法的实现。

    size_t instanceSize(size_t extraBytes) {
    size_t size = alignedInstanceSize() + extraBytes;
    // CF requires all objects be at least 16 bytes.
    if (size < 16) size = 16;
    return size;
    }

    uint32_t alignedInstanceSize() {
    return word_align(unalignedInstanceSize());
    }

    uint32_t unalignedInstanceSize() {
    assert(isRealized());
    return data()->ro->instanceSize;
    }

    实例大小 instanceSize会存储在类的 isa_t结构体中,然后经过对齐最后返回。

    注意:Core Foundation 需要所有的对象的大小都必须大于或等于 16 字节。

    在获取对象大小之后,直接调用calloc函数就可以为对象分配内存空间了。

    关于calloc函数

    The calloc( ) function contiguously allocates enough space for count objects that are size bytes of memory each and returns a pointer to the allocated memory. The allocated memory is filled with bytes of value zero.

    这个函数也是为什么我们申请出来的对象,初始值是0或者nil的原因。因为这个calloc( )函数会默认的把申请出来的空间初始化为0或者nil。

    申请完内存空间之后,还需要再初始化Isa指针。

    obj->initInstanceIsa(cls, hasCxxDtor);

    obj->initIsa(cls);

    初始化Isa指针有这上面两个函数。

    inline void objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
    {
    assert(!UseGC);
    assert(!cls->requiresRawIsa());
    assert(hasCxxDtor == cls->hasCxxDtor());

    initIsa(cls, true, hasCxxDtor);
    }

    inline void objc_object::initIsa(Class cls)
    {
    initIsa(cls, false, false);
    }

    从上述源码中,我们也能看出,最终都是调用了initIsa函数,只不过入参不同。

    inline void objc_object::initIsa(Class cls, bool indexed, bool hasCxxDtor)
    {
    assert(!isTaggedPointer());

    if (!indexed) {
    isa.cls = cls;
    } else {
    assert(!DisableIndexedIsa);
    isa.bits = ISA_MAGIC_VALUE;
    // isa.magic is part of ISA_MAGIC_VALUE
    // isa.indexed is part of ISA_MAGIC_VALUE
    isa.has_cxx_dtor = hasCxxDtor;
    isa.shiftcls = (uintptr_t)cls >> 3;
    }
    }

    初始化的过程就是对isa_t结构体初始化的过程。

    # if __arm64__
    # define ISA_MASK 0x0000000ffffffff8ULL
    # define ISA_MAGIC_MASK 0x000003f000000001ULL
    # define ISA_MAGIC_VALUE 0x000001a000000001ULL
    struct {
    uintptr_t indexed : 1;
    uintptr_t has_assoc : 1;
    uintptr_t has_cxx_dtor : 1;
    uintptr_t shiftcls : 33; // MACH_VM_MAX_ADDRESS 0x1000000000
    uintptr_t magic : 6;
    uintptr_t weakly_referenced : 1;
    uintptr_t deallocating : 1;
    uintptr_t has_sidetable_rc : 1;
    uintptr_t extra_rc : 19;
    # define RC_ONE (1ULL<<45)
    # define RC_HALF (1ULL<<18)
    };

    将当前地址右移三位的主要原因是用于将 Class 指针中无用的后三位清除减小内存的消耗,因为类的指针要按照字节(8 bits)对齐内存,其指针后三位都是没有意义的 0。 绝大多数机器的架构都是byte-addressable的,但是对象的内存地址必须对齐到字节的倍数,这样可以提高代码运行的性能,在 iPhone5s中虚拟地址为33位,所以用于对齐的最后三位比特为000,我们只会用其中的30位来表示对象的地址。

    至此,孕育对象的过程就完成了。

    二.对象的出生

    一旦当我们调用init方法的时候,对象就会“出生”了。

    - (id)init {
    return _objc_rootInit(self);
    }

    init会调用_objc_rootInit方法。

    id _objc_rootInit(id obj)
    {
    // In practice, it will be hard to rely on this function.
    // Many classes do not properly chain -init calls.
    return obj;
    }

    而_objc_rootInit方法的作用也仅仅就是返回了当前对象而已。

    三.对象的生长

    关于对象的生长,其实是想谈谈对象初始化之后,访问它的属性和方法,它们在内存中的样子。

    #import <Foundation/Foundation.h>

    @interface Student : NSObject
    @property (strong , nonatomic) NSString *name;
    +(void)study;
    -(void)run;
    @end

    #import "Student.h"
    @implementation Student

    +(void)study
    {
    NSLog(@"Study");
    }

    -(void)run
    {
    NSLog(@"Run");
    }
    @end

    这里我们新建一个Student类,来举例说明。这个类很简单,只有一个name的属性,加上一个类方法,和一个实例方法。

    Student *stu = [[Student alloc]init];

    NSLog(@"Student's class is %@", [stu class]);
    NSLog(@"Student's meta class is %@", object_getClass([stu class]));
    NSLog(@"Student's meta class's superclass is %@", object_getClass(object_getClass([stu class])));

    Class currentClass = [Student class];
    for (int i = 1; i < 5; i++)
    {
    NSLog(@"Following the isa pointer %d times gives %p %@", i, currentClass,currentClass);
    currentClass = object_getClass(currentClass);
    }

    NSLog(@"NSObject's class is %p", [NSObject class]);
    NSLog(@"NSObject's meta class is %p", object_getClass([NSObject class]));

    写出上述的代码,分析一下结构。

    输出如下:

    Student's class is Student
    Student's meta class is Student
    Student's meta class's superclass is NSObject
    Following the isa pointer 1 times gives 0x100004d90 Student
    Following the isa pointer 2 times gives 0x100004d68 Student
    Following the isa pointer 3 times gives 0x7fffba0b20f0 NSObject
    Following the isa pointer 4 times gives 0x7fffba0b20f0 NSObject
    NSObject's class is 0x7fffba0b2140
    NSObject's meta class is 0x7fffba0b20f0

    经过上面的打印结果,我们可以知道,一个类的实例的isa是指向它的class,如下图:

    一个类的实例,虚线指向灰色的区域,灰色的区域是一个Class pair,里面包含两个东西,一个是类,另一个是meta-class。类的isa指向meta-class。由于student是继承NSObject,所以Student的class的meta-class的superclass是NSObject。

    为了弄清楚这3个东西里面分别存了些什么,我们进一步的打印一些信息。

    + (NSArray *)instanceVariables {
    unsigned int outCount;
    Ivar *ivars = class_copyIvarList([self class], &outCount);
    NSMutableArray *result = [NSMutableArray array];
    for (unsigned int i = 0; i < outCount; i++) {
    NSString *type = [NSString decodeType:ivar_getTypeEncoding(ivars[i])];
    NSString *name = [NSString stringWithCString:ivar_getName(ivars[i]) encoding:NSUTF8StringEncoding];
    NSString *ivarDescription = [NSString stringWithFormat:@"%@ %@", type, name];
    [result addObject:ivarDescription];
    }
    free(ivars);
    return result.count ? [result copy] : nil;
    }

    从之前的打印信息我们能知道,0x100004d90是类的地址。0x100004d68是meta-class类的地址。

    po [0x100004d90 instanceVariables]
    po [0x100004d68 instanceVariables]

    打印出来:

    <__NSSingleObjectArrayI 0x100302460>(
    NSString* _name
    )

    nil

    从这里就知道了,属性这些是存储在类中。

    接下来就是关于类方法和实例方法的认识,+号方法和-号方法的认识。

    在内存中其实没有+号和-号方法的概念。做个试验:

    + (NSArray *)ClassMethodNames
    {
    NSMutableArray * array = [NSMutableArray array];
    unsigned int methodCount = 0;
    Method * methodList = class_copyMethodList([self class], &methodCount);
    unsigned int i;
    for(i = 0; i < methodCount; i++) {
    [array addObject: NSStringFromSelector(method_getName(methodList[i]))];
    }

    free(methodList);
    return array;
    }

    po [0x100004d90 ClassMethodNames]
    po [0x100004d68 ClassMethodNames]

    打印出来:

    <__NSArrayM 0x100303310>(
    .cxx_destruct,
    name,
    setName:,
    run
    )

    <__NSArrayM 0x100303800>(
    study
    )

    0x100004d90是类对象,里面存储的是-号方法,还有另外3个方法,getter,setter,还有.cxx_destruct方法

    0x100004d68是meta-class,里面存储的是+号方法。

    当然在runtime的meta-class有一处很特殊,那就是NSObject的meta-class,它的superclass是它自己本身。为了防止调用NSObject协议里面的减号方法可能会出现崩溃,比如copy的-号方法,于是在NSObject的meta-class里面把所有的NSObject的+号方法都重新实现了一遍,就是为了消息传递到这里,拦截了一遍。所以一般NSObject协议方法同一个方法都有+号和-号方法。

    值得说明的是,class和meta-class都是单例。

    关于对象,所有的对象在内存里面都有一个isa,isa就是一个小“雷达”,有了它,就可以在runtime下给一个对象发送消息了。

    所以对象的实质:Objc中的对象是一个指向ClassObject地址的变量,即 id obj = &ClassObject 。

    关于对象的属性实质是,void *ivar = &obj + offset(N)

    NSString *myName = @"halfrost";

    id cls = [Student class];
    NSLog(@"Student class = %@ 地址 = %p , 大小 = %lu", cls, &cls,sizeof(cls));

    void *obj = &cls;
    NSLog(@"Void *obj = %@ 地址 = %p , 大小 = %lu", obj,&obj, sizeof(obj));

    NSLog(@"%p",((__bridge Student *)obj).name);

    输出

    Student class = Student 地址 = 0x7fff5fbff778 , 大小 = 8
    Void *obj = <Student: 0x7fff5fbff778> 地址 = 0x7fff5fbff770 , 大小 = 8

    halfrost

    从这个例子就可以说明,对象的实质就是指向类对象的地址变量,从上面例子里面obj就可以看出, id obj = &ClassObject ,cls是Student的类对象,所以obj是Student的对象。

    类对象是在main函数执行之前就加载进内存的,可执行文件中和动态库所有的符号(Class,Protocol,Selector,IMP,…)都已经按格式成功加载到内存中,被 runtime 所管理,再这之后,runtime 的那些方法(动态添加 Class、swizzle 等等才能生效)

    关于对象的属性,就是obj的地址加上偏移量,就可以访问到,上述的例子中,obj加上偏移量,就访问到了@“halfrost”字符串了。

    四.对象的销毁

    对象的销毁就是调用dealloc方法。

    - (void)dealloc {
    _objc_rootDealloc(self);
    }

    dealloc方法会调用_objc_rootDealloc方法

    void _objc_rootDealloc(id obj)
    {
    assert(obj);

    obj->rootDealloc();
    }

    inline void objc_object::rootDealloc()
    {
    assert(!UseGC);
    if (isTaggedPointer()) return;

    if (isa.indexed &&
    !isa.weakly_referenced &&
    !isa.has_assoc &&
    !isa.has_cxx_dtor &&
    !isa.has_sidetable_rc)
    {
    assert(!sidetable_present());
    free(this);
    }
    else {
    object_dispose((id)this);
    }
    }

    如果是TaggedPointer,直接return。

    indexed是代表是否开启isa指针优化。weakly_referenced代表对象被指向或者曾经指向一个 ARC 的弱变量。has_assoc代表对象含有或者曾经含有关联引用。has_cxx_dtor之前提到过了,是析构器。has_sidetable_rc判断该对象的引用计数是否过大。

    id object_dispose(id obj)
    {
    if (!obj) return nil;

    objc_destructInstance(obj);

    #if SUPPORT_GC
    if (UseGC) {
    auto_zone_retain(gc_zone, obj); // gc free expects rc==1
    }
    #endif

    free(obj);

    return nil;
    }

    object_dispose会调用objc_destructInstance。

    /***********************************************************************
    * objc_destructInstance
    * Destroys an instance without freeing memory.
    * Calls C++ destructors.
    * Calls ARR ivar cleanup.
    * Removes associative references.
    * Returns `obj`. Does nothing if `obj` is nil.
    * Be warned that GC DOES NOT CALL THIS. If you edit this, also edit finalize.
    * CoreFoundation and other clients do call this under GC.
    **********************************************************************/
    void *objc_destructInstance(id obj)
    {
    if (obj) {
    // Read all of the flags at once for performance.
    bool cxx = obj->hasCxxDtor();
    bool assoc = !UseGC && obj->hasAssociatedObjects();
    bool dealloc = !UseGC;

    // This order is important.
    if (cxx) object_cxxDestruct(obj);
    if (assoc) _object_remove_assocations(obj);
    if (dealloc) obj->clearDeallocating();
    }

    return obj;
    }

    销毁一个对象,靠的是底层的C++析构函数完成的。还需要移除associative的引用。

    接下来就依次详细看看销毁对象的3个方法。

    1.object_cxxDestruct

    void object_cxxDestruct(id obj)
    {
    if (!obj) return;
    if (obj->isTaggedPointer()) return;
    object_cxxDestructFromClass(obj, obj->ISA());
    }

    static void object_cxxDestructFromClass(id obj, Class cls)
    {
    void (*dtor)(id);

    // Call cls's dtor first, then superclasses's dtors.

    for ( ; cls; cls = cls->superclass) {
    if (!cls->hasCxxDtor()) return;
    dtor = (void(*)(id))
    lookupMethodInClassAndLoadCache(cls, SEL_cxx_destruct);
    if (dtor != (void(*)(id))_objc_msgForward_impcache) {
    if (PrintCxxCtors) {
    _objc_inform("CXX: calling C++ destructors for class %s",
    cls->nameForLogging());
    }
    (*dtor)(obj);
    }
    }
    }

    从子类开始沿着继承链一直找到父类,向上搜寻SEL_cxx_destruct 这个selector,找到函数实现(void (*)(id)(函数指针)并执行。

    ARC actually creates a -.cxx_destruct method to handle freeing instance variables. This method was originally created for calling C++ destructors automatically when an object was destroyed.

    和《Effective Objective-C 2.0》中提到的:

    When the compiler saw that an object contained C++ objects, it would generate a method called .cxx_destruct. ARC piggybacks on this method and emits the required cleanup code within it.

    可以了解到,.cxx_destruct方法原本是为了C++对象析构的,ARC借用了这个方法插入代码实现了自动内存释放的工作。

    在ARC中dealloc方法在最后一次release后被调用,但此时实例变量(Ivars)并未释放, 父类的dealloc的方法将在子类dealloc方法返回后自动调用 。ARC下对象的实例变量在根类[NSObject dealloc]中释放(通常root class都是NSObject),变量释放顺序各种不确定(一个类内的不确定,子类和父类间也不确定,也就是说不用care释放顺序)

    经过@sunnyxx文中的研究: 1.ARC下对象的成员变量于编译器插入的.cxx_desctruct方法自动释放。

    2.ARC下[super dealloc]方法也由编译器自动插入。

    至于.cxx_destruct方法的实现,还请看@sunnyxx 那篇文章里面详细的分析。

    2._object_remove_assocations

    void _object_remove_assocations(id object) {
    vector< ObjcAssociation,ObjcAllocator<ObjcAssociation> > elements;
    {
    AssociationsManager manager;
    AssociationsHashMap &associations(manager.associations());
    if (associations.size() == 0) return;
    disguised_ptr_t disguised_object = DISGUISE(object);
    AssociationsHashMap::iterator i = associations.find(disguised_object);
    if (i != associations.end()) {
    // copy all of the associations that need to be removed.
    ObjectAssociationMap *refs = i->second;
    for (ObjectAssociationMap::iterator j = refs->begin(), end = refs->end(); j != end; ++j) {
    elements.push_back(j->second);
    }
    // remove the secondary table.
    delete refs;
    associations.erase(i);
    }
    }
    // the calls to releaseValue() happen outside of the lock.
    for_each(elements.begin(), elements.end(), ReleaseValue());
    }

    在移除关联对象object的时候,会先去判断object的isa_t中的第二位has_assoc的值,当object 存在并且object->hasAssociatedObjects( )值为1的时候,才会去调用_object_remove_assocations方法。

    _object_remove_assocations方法的目的是删除第二张ObjcAssociationMap表,即删除所有的关联对象。删除第二张表,就需要在第一张AssociationsHashMap表中遍历查找。这里会把第二张ObjcAssociationMap表中所有的ObjcAssociation对象都存到一个数组elements里面,然后调用associations.erase( )删除第二张表。最后再遍历elements数组,把ObjcAssociation对象依次释放。

    这里移除的方式和Associated Object关联对象里面的remove方法是完全一样的。

    3.clearDeallocating( )

    inline void objc_object::clearDeallocating()
    {
    if (!isa.indexed) {
    // Slow path for raw pointer isa.
    sidetable_clearDeallocating();
    }
    else if (isa.weakly_referenced || isa.has_sidetable_rc) {
    // Slow path for non-pointer isa with weak refs and/or side table data.
    clearDeallocating_slow();
    }

    assert(!sidetable_present());
    }

    这里涉及到了2个clear函数,接下来一个个的看。

    void objc_object::sidetable_clearDeallocating()
    {
    SideTable& table = SideTables()[this];

    // clear any weak table items
    // clear extra retain count and deallocating bit
    // (fixme warn or abort if extra retain count == 0 ?)
    table.lock();
    RefcountMap::iterator it = table.refcnts.find(this);
    if (it != table.refcnts.end()) {
    if (it->second & SIDE_TABLE_WEAKLY_REFERENCED) {
    weak_clear_no_lock(&table.weak_table, (id)this);
    }
    table.refcnts.erase(it);
    }
    table.unlock();
    }

    遍历SideTable,循环调用weak_clear_no_lock函数。

    weakly referenced代表对象被指向或者曾经指向一个 ARC 的弱变量。has sidetable_rc判断该对象的引用计数是否过大。如果其中有一个为YES,则调用clearDeallocating_slow()方法。

    // Slow path of clearDeallocating()
    // for objects with indexed isa
    // that were ever weakly referenced
    // or whose retain count ever overflowed to the side table.
    NEVER_INLINE void objc_object::clearDeallocating_slow()
    {
    assert(isa.indexed && (isa.weakly_referenced || isa.has_sidetable_rc));

    SideTable& table = SideTables()[this];
    table.lock();
    if (isa.weakly_referenced) {
    weak_clear_no_lock(&table.weak_table, (id)this);
    }
    if (isa.has_sidetable_rc) {
    table.refcnts.erase(this);
    }
    table.unlock();
    }

    clearDeallocating_slow也会最终调用weak_clear_no_lock方法。

    /**
    * Called by dealloc; nils out all weak pointers that point to the
    * provided object so that they can no longer be used.
    *
    * @param weak_table
    * @param referent The object being deallocated.
    */
    void weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
    {
    objc_object *referent = (objc_object *)referent_id;

    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
    /// XXX shouldn't happen, but does with mismatched CF/objc
    //printf("XXX no entry for clear deallocating %p\n", referent);
    return;
    }

    // zero out references
    weak_referrer_t *referrers;
    size_t count;

    if (entry->out_of_line) {
    referrers = entry->referrers;
    count = TABLE_SIZE(entry);
    }
    else {
    referrers = entry->inline_referrers;
    count = WEAK_INLINE_COUNT;
    }

    for (size_t i = 0; i < count; ++i) {
    objc_object **referrer = referrers[i];
    if (referrer) {
    if (*referrer == referent) {
    *referrer = nil;
    }
    else if (*referrer) {
    _objc_inform("__weak variable at %p holds %p instead of %p. "
    "This is probably incorrect use of "
    "objc_storeWeak() and objc_loadWeak(). "
    "Break on objc_weak_error to debug.\n",
    referrer, (void*)*referrer, (void*)referent);
    objc_weak_error();
    }
    }
    }

    weak_entry_remove(weak_table, entry);
    }

    这个函数会在weak_table中,清空引用计数表并清除弱引用表,将所有weak引用指nil。

    总结

    这篇文章详细的分析了objc对象 从 出生 到 最终销毁,它的今生今世全部在此。还请大家多多指点。

     

     

    来自:http://www.halfrost.com/objc_life/

     





沪ICP备19023445号-2号
友情链接