一台单机在存储容量、计算毫无疑问都是有很大限制的。为了解决单机无法完成的大存储(>1TB)和大规模计算,分布式系统就应运而生了。
说Hadoop前,先说下Google。Google的伟大之处不仅在于它建立了一个强悍的搜索引擎,它还创造了几项革命性的技术:GFS,MapReduce,BigTable,即所谓的Google三驾马车。Google虽然没有公布这几项技术的实现代码,但它发表了详细的设计论文,这给业界带来了新鲜气息,很快就出现了类似于Google三驾马车的开源实现,Hadoop就是其中的一个。
Hadoop是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构。Hadoop是一个基于Java实现的,开源的,分布式存储和计算的项目。作为这个领域最富盛名的开源项目之一,它的使用者也是大牌如云,包括了Yahoo,Amazon,Facebook等等.
Hadoop的框架最核心的设计就是:HDFS和MapReduce。
- HDFS为海量的数据提供了存储。
- MapReduce为海量的数据提供了计算。
HDFS是Google File System(GFS)的开源实现。
MapReduce是Google MapReduce的开源实现。
HDFS
HDFS(Hadoop Distributed File System)实现了一个分布式文件系统。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
HDFS的设计特点是:
1、大数据文件,非常适合上T级别的大文件或者一堆大数据文件的存储,如果文件只有几个G甚至更小就没啥意思了。
2、文件分块存储,HDFS会将一个完整的大文件平均分块存储到不同计算器上,它的意义在于读取文件时可以同时从多个主机取不同区块的文件,多主机读取比单主机读取效率要高得多得都。
3、流式数据访问,一次写入多次读写,这种模式跟传统文件不同,它不支持动态改变文件内容,而是要求让文件一次写入就不做变化,要变化也只能在文件末添加内容。
4、廉价硬件,HDFS可以应用在普通PC机上,这种机制能够让给一些公司用几十台廉价的计算机就可以撑起一个大数据集群。
5、硬件故障,HDFS认为所有计算机都可能会出问题,为了防止某个主机失效读取不到该主机的块文件,它将同一个文件块副本分配到其它某几个主机上,如果其中一台主机失效,可以迅速找另一块副本取文件。
HDFS的关键元素:
Block:将一个文件进行分块,通常是64M。
NameNode:保存整个文件系统的目录信息、文件信息及分块信息,这是由唯一一台主机专门保存,当然这台主机如果出错,NameNode就失效了。在Hadoop2.*开始支持activity-standy模式----如果主NameNode失效,启动备用主机运行NameNode。
DataNode:分布在廉价的计算机上,用于存储Block块文件。
MapReduce
MapReduce计算框架适用于超大规模的数据(100TB量级)且各数据之间相关性较低的情况。MapReduce的思想是由Google的论文所提及而被广为流传的,简单的一句话解释MapReduce就是“任务的分解与结果的汇总”。
通俗说MapReduce是一套从海量·源数据提取分析元素最后返回结果集的编程模型,将文件分布式存储到硬盘是第一步,而从海量数据中提取分析我们需要的内容就是MapReduce做的事了。
下面以一个计算海量数据最大值为例:一个银行有上亿储户,银行希望找到存储金额最高的金额是多少,按照传统的计算方式,我们会这样:
Long moneys[] ...
Long max = 0L;
for(int i=0;i<moneys.length;i++){
if(moneys[i]>max){
max = moneys[i];
}
}
如果计算的数组长度少的话,这样实现是不会有问题的,还是面对海量数据的时候就会有问题。
MapReduce会这样做:首先数字是分布存储在不同块中的,以某几个块为一个Map,计算出Map中最大的值,然后将每个Map中的最大值做Reduce操作,Reduce再取最大值给用户。
MapReduce的基本原理就是:将大的数据分析分成小块逐个分析,最后再将提取出来的数据汇总分析,最终获得我们想要的内容。当然怎么分块分析,怎么做Reduce操作非常复杂,Hadoop已经提供了数据分析的实现,我们只需要编写简单的需求命令即可达成我们想要的数据。
参考