通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting),比如数据集是
一个钟形的曲线。而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的
过拟合(overfitting),不符合数据真实的模型。
今天来讲一种非参数学习方法,叫做局部加权回归(LWR)。为什么局部加权回归叫做非参数学习方法呢? 首
先参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本
的值,这时不再依赖之前的训练数据了,参数值是确定的。而非参数学习方法是这样一种算法:在预测新样本值
时候每次都会重新训练数据得到新的参数值,也就是说每次预测新样本都会依赖训练数据集合,所以每次得到的
参数值是不确定的。
接下来,介绍局部加权回归的原理。
有上面的原理,我们来实践一下,使用python的代码来实现,如下:
#python 3.5.3 蔡军生 #http://edu.csdn.net/course/detail/2592 # 计算加权回归 import numpy as np import random import matplotlib.pyplot as plt def gaussian_kernel(x, x0, c, a=1.0): """ Gaussian kernel. :Parameters: - `x`: nearby datapoint we are looking at. - `x0`: data point we are trying to estimate. - `c`, `a`: kernel parameters. """ # Euclidian distance diff = x - x0 dot_product = diff * diff.T return a * np.exp(dot_product / (-2.0 * c**2)) def get_weights(training_inputs, datapoint, c=1.0): """ Function that calculates weight matrix for a given data point and training data. :Parameters: - `training_inputs`: training data set the weights should be assigned to. - `datapoint`: data point we are trying to predict. - `c`: kernel function parameter :Returns: NxN weight matrix, there N is the size of the `training_inputs`. """ x = np.mat(training_inputs) n_rows = x.shape[0] # Create diagonal weight matrix from identity matrix weights = np.mat(np.eye(n_rows)) for i in range(n_rows): weights[i, i] = gaussian_kernel(datapoint, x[i], c) return weights def lwr_predict(training_inputs, training_outputs, datapoint, c=1.0): """ Predict a data point by fitting local regression. :Parameters: - `training_inputs`: training input data. - `training_outputs`: training outputs. - `datapoint`: data point we want to predict. - `c`: kernel parameter. :Returns: Estimated value at `datapoint`. """ weights = get_weights(training_inputs, datapoint, c=c) x = np.mat(training_inputs) y = np.mat(training_outputs).T xt = x.T * (weights * x) betas = xt.I * (x.T * (weights * y)) return datapoint * betas def genData(numPoints, bias, variance): x = np.zeros(shape=(numPoints, 2)) y = np.zeros(shape=numPoints) # 构造一条直线左右的点 for i in range(0, numPoints): # 偏移 x[i][0] = 1 x[i][1] = i # 目标值 y[i] = bias + i * variance + random.uniform(0, 1) * 20 return x, y #生成数据 a1, a2 = genData(100, 10, 0.6) a3 = [] #计算每一点 for i in a1: pdf = lwr_predict(a1, a2, i, 1) a3.append(pdf.tolist()[0]) plt.plot(a1[:,1], a2, "x") plt.plot(a1[:,1], a3, "r-") plt.show()采用C = 1.0的结果图:
采用C = 2.0的结果图: