IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    #转载# Flask超高并发,Flask多进程gevent ,Flask非gunicorn gevent多进程

    admin发表于 2020-11-24 06:06:44
    love 0

    Flask超高并发,Flask多进程gevent ,Flask非gunicorn gevent多进程。

    Flask超高性能解决方案,Flask多进程gevent ,Flask非gunicorn gevent多进程。

    Flask并发,高性能,Flask多进程gevent ,Flask非gunicorn gevent多进程。

    转载一篇文章,实测效果不错。转载自:https://cpp.la/439.html

    python多进程gevent,Flask gevent multiprocess WSGI,Flask gevent 多进程WSGI,Flask多进程gevent。

    题外话:Flask,Instagram据说扛住了上亿日活,以前是Django。其是一个非常优秀的web service 框架,简洁灵活,可以利用大量的第三方组件和模块来快速开发。

    如今,Instagram 的总注册用户达到 30 亿,月活用户超过 7 亿 (作为对比,微信最新披露的月活跃用户为 9.38 亿)。而令人吃惊的是,这么高的访问量背后,竟完全是由以速度“慢”著称的 Python + Django 支撑。

    时至今日,即使已经拥有超过 30 亿的注册用户。Instagram 仍然是 Python 和 Django 的重度使用者。Instagram 的工程师 Hui Ding 说到: 『一直到用户 ID 已经超过了 32bit int 的限额(约为 20 亿),Django 本身仍然没有成为我们的瓶颈所在。』

    flask + gevent + multiprocess + wsgi简介

    常常大家都是用gunicorn来解决flask后端部署并发的问题, 然而觉得自启多进程是为更优雅的高并发方式。这样就不需要gunicorn了。也没有额外的第三方部署工作,于是有了以下flask + gevent + multiprocess + wsgi的测试

    flask + gevent + multiprocess + wsgi程序代码cppla.py

     

    # coding: utf-8
    # code by https://cpp.la, 2020-04-20
    # flask + gevent + multiprocess + wsgi
    
    from gevent import monkey
    from gevent.pywsgi import WSGIServer
    monkey.patch_all()
    
    import datetime
    import os
    from multiprocessing import cpu_count, Process
    from flask import Flask, jsonify
    
    
    app = Flask(__name__)
    
    @app.route("/cppla", methods=['GET'])
    def function_benchmark():
        return jsonify(
            {
                "status": "ok",
                "time": datetime.datetime.now().strftime('%Y-%m-%d %H:%M'),
                "pid": os.getpid()
            }
        ), 200
    
    def run(MULTI_PROCESS):
        if MULTI_PROCESS == False:
            WSGIServer(('0.0.0.0', 8080), app).serve_forever()
        else:
            mulserver = WSGIServer(('0.0.0.0', 8080), app)
            mulserver.start()
    
            def server_forever():
                mulserver.start_accepting()
                mulserver._stop_event.wait()
    
            for i in range(cpu_count()):
                p = Process(target=server_forever)
                p.start()
    
    if __name__ == "__main__":
        # 单进程 + 协程
        run(False)
        # 多进程 + 协程
        # run(True)

    测试环境

    机器配置

    • 4vCPU
    • 8GB

    环境配置

    • Centos 8
    • Python 3.6.8
    • Flask  1.1.2
    • Gevent 1.5.0

    压测工具

    • WRK
    • 4H8G机器

    单进程 + 协程 + WSGI

    测试结果

    QPS : 2361 r/s

    该模式启动了一个进程

     

    [root@vm5 ~]# nohup python3 cppla.py &
    [1] 9371
    [root@vm5 ~]# nohup: ignoring input and appending output to 'nohup.out'
     
    [root@vm5 ~]# ps -ef | grep cppla
    root      9371  4184  4 03:33 pts/0    00:00:00 python3 cppla.py
    root      9377  4184  0 03:33 pts/0    00:00:00 grep --color=auto cppla
    [root@vm5 ~]#

    测试详情

    [root@vm4 wrk]# curl 10.10.10.5:8080/cppla
    {"pid":9371,"status":"ok","time":"2020-04-20 04:19"}
    [root@vm4 wrk]# curl 10.10.10.5:8080/cppla
    {"pid":9371,"status":"ok","time":"2020-04-20 04:19"}
    [root@vm4 wrk]# curl 10.10.10.5:8080/cppla
    {"pid":9371,"status":"ok","time":"2020-04-20 04:19"}
    [root@vm4 wrk]# wrk -t12 -c400 -d30s http://10.10.10.5:8080/cppla
    Running 30s test @ http://10.10.10.5:8080/cppla
      12 threads and 400 connections
      Thread Stats   Avg      Stdev     Max   +/- Stdev
        Latency   164.40ms   21.15ms 515.30ms   80.85%
        Req/Sec   199.61     47.81   565.00     70.38%
      71237 requests in 30.10s, 10.95MB read
    Requests/sec:   2366.72
    Transfer/sec:    372.44KB
    [root@vm4 wrk]# wrk -t20 -c800 -d30s http://10.10.10.5:8080/cppla   
    Running 30s test @ http://10.10.10.5:8080/cppla
      20 threads and 800 connections
      Thread Stats   Avg      Stdev     Max   +/- Stdev
        Latency   329.39ms   93.86ms   1.78s    92.80%
        Req/Sec   126.19     80.69   696.00     67.71%
      71075 requests in 30.10s, 10.92MB read
      Socket errors: connect 0, read 0, write 0, timeout 97
    Requests/sec:   2361.39
    Transfer/sec:    371.65KB
    [root@vm4 wrk]#

    多进程 + 协程 + WSGI

    测试结果

    QPS : 7500 r/s

    该模式启动了4+1个进程(4vCPU)

    [root@vm5 ~]# nohup python3 cppla.py &
    [1] 9537
    [root@vm5 ~]# nohup: ignoring input and appending output to ‘nohup.out’

    [root@vm5 ~]# ps -ef | grep cppla
    root 9537 4184 5 04:32 pts/0 00:00:00 python3 cppla.py
    root 9542 9537 0 04:32 pts/0 00:00:00 python3 cppla.py
    root 9543 9537 0 04:32 pts/0 00:00:00 python3 cppla.py
    root 9544 9537 0 04:32 pts/0 00:00:00 python3 cppla.py
    root 9545 9537 0 04:32 pts/0 00:00:00 python3 cppla.py
    root 9547 4184 0 04:32 pts/0 00:00:00 grep –color=auto cppla
    [root@vm5 ~]#

    测试详情

    [root@vm4 wrk]# curl 10.10.10.5:8080/cppla
    {"pid":9543,"status":"ok","time":"2020-04-20 04:34"}
    [root@vm4 wrk]# curl 10.10.10.5:8080/cppla
    {"pid":9542,"status":"ok","time":"2020-04-20 04:34"}
    [root@vm4 wrk]# curl 10.10.10.5:8080/cppla
    {"pid":9545,"status":"ok","time":"2020-04-20 04:34"}
    [root@vm4 wrk]# wrk -t12 -c400 -d30s http://10.10.10.5:8080/cppla
    Running 30s test @ http://10.10.10.5:8080/cppla
      12 threads and 400 connections
      Thread Stats   Avg      Stdev     Max   +/- Stdev
        Latency    56.10ms   15.16ms 187.30ms   85.05%
        Req/Sec   590.77     79.95   830.00     67.97%
      212138 requests in 30.08s, 32.60MB read
    Requests/sec:   7051.89
    Transfer/sec:      1.08MB
    [root@vm4 wrk]# wrk -t20 -c800 -d30s http://10.10.10.5:8080/cppla
    Running 30s test @ http://10.10.10.5:8080/cppla
      20 threads and 800 connections
      Thread Stats   Avg      Stdev     Max   +/- Stdev
        Latency   101.59ms   40.23ms 337.80ms   66.06%
        Req/Sec   394.20    109.48     0.97k    74.47%
      235844 requests in 30.10s, 36.25MB read
    Requests/sec:   7835.77
    Transfer/sec:      1.20MB
    [root@vm4 wrk]#

    协程并发真的很强!4核虚拟机多进程并发高达7000QPS,回头测试一下python协程和golang协程的效率对比。

    补充:4核8线程3.6GHZ物理机上多进程并发高达15000QPS

    也就是“理想”情况,每秒1w5 QPS,每小时5400万请求。

    [root@vm4 wrk]# wrk -t30 -c1000 -d30s http://10.10.10.1:8080/cppla 
    Running 30s test @ http://10.10.10.1:8080/cppla
      30 threads and 1000 connections
      Thread Stats   Avg      Stdev     Max   +/- Stdev
        Latency    67.67ms   18.54ms 312.76ms   81.81%
        Req/Sec   489.92     76.58   710.00     68.65%
      440105 requests in 30.09s, 68.07MB read
    Requests/sec:  14626.25
    Transfer/sec:      2.26MB
    [root@vm4 wrk]#

    转载自:https://cpp.la/439.html



沪ICP备19023445号-2号
友情链接