IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    MySQL为什么”错误”选择代价更大的索引

    叶金荣发表于 2021-12-16 00:29:12
    love 0

    MySQL优化器索引选择迷思。

    高鹏(八怪)对本文亦有贡献。

    1. 问题描述

    群友提出问题,表里有两个列c1、c2,分别为INT、VARCHAR类型,且分别创建了unique key。

    SQL查询的条件是 WHERE c1 = ? AND c2 = ?,用EXPLAIN查看执行计划,发现优化器优先选择了VARCHAR类型的c2列索引。

    他表示很不理解,难道不应该选择看起来代价更小的INT类型的c1列吗?

    2. 问题复现

    创建测试表t1:

    [root@yejr.run]> CREATE TABLE `t1` (
      `c1` int NOT NULL AUTO_INCREMENT,
      `c2` int unsigned NOT NULL,
      `c3` varchar(20) NOT NULL,
      `c4` varchar(20) NOT NULL,
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k3` (`c3`),
      UNIQUE KEY `k2` (`c2`)
    ) ENGINE=InnoDB;
    

    利用 mysql_random_data_load 写入一万行数据:

    mysql_random_data_load -h127.0.0.1 -uX -pX yejr t1 10000
    

    查看执行计划:

    [root@yejr.run]> EXPLAIN SELECT * FROM t1 WHERE
     c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: t1
       partitions: NULL
             type: const
    possible_keys: k3,k2
              key: k3
          key_len: 82
              ref: const
             rows: 1
         filtered: 100.00
            Extra: NULL
    

    可以看到优化器的确选择了 k3 索引,而非”预期”的 k2 索引,这是为什么呢?

    3. 问题分析

    其实原因很简单粗暴:优化器认为这两个索引选择的代价都是一样的,只是优先选中排在前面的那个索引而已。

    再建一个相同的表 t2,只不过把 k2、k3 的索引创建顺序对调下:

    [root@yejr.run]> CREATE TABLE `t2` (
      `c1` int NOT NULL AUTO_INCREMENT,
      `c2` int unsigned NOT NULL,
      `c3` varchar(20) NOT NULL,
      `c4` varchar(20) NOT NULL,
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k2` (`c2`),
      UNIQUE KEY `k3` (`c3`)
    ) ENGINE=InnoDB;
    

    再查看执行计划:

    [root@yejr.run]> EXPLAIN SELECT * FROM t2 WHERE
     c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: t1
       partitions: NULL
             type: const
    possible_keys: k2,k3
              key: k2
          key_len: 4
              ref: const
             rows: 1
         filtered: 100.00
            Extra: NULL
    

    我们利用 EXPLAIN ANALYZE 来查看下两次执行计划的代价对比:

    -- 查看t1表执行计划代价
    [root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t1 WHERE
      c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
    *************************** 1. row ***************************
    EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
    
    -- 查看t2表执行计划代价
    [root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t2 WHERE  c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
    *************************** 1. row ***************************
    EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
    

    可以看到,很明显代价都是一样的。

    再利用 OPTIMIZE_TRACE 查看执行计划,也能看到两个SQL的代价是一样的:

    ...
              {
                "rows_estimation": [
                  {
                    "table": "`t1`",
                    "rows": 1,
                    "cost": 1,
                    "table_type": "const",
                    "empty": false
                  }
                ]
              },
    ...
    

    所以,优化器认为选择哪个索引都是一样的,就看哪个索引排序更靠前。

    从执行SELECT时的debug trace结果也能佐证:

    -- 1、 T1表,k3索引在前面
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k3` (`c3`),
      UNIQUE KEY `k2` (`c2`)
    
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t1`"
    T@2: | | | | | | | | opt: field: "c3"   (C3在前面,因此最后使用k3)
    T@2: | | | | | | | | >convert_string
    T@2: | | | | | | | | | >alloc_root
    T@2: | | | | | | | | | | enter: root: 0x40a8068
    T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
    T@2: | | | | | | | | | <alloc_root 304
    T@2: | | | | | | | | <convert_string 2610
    T@2: | | | | | | | | opt: equals: "'Louise Garrett'" 
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t1`"
    T@2: | | | | | | | | opt: field: "c2"
    T@2: | | | | | | | | opt: equals: "22896242"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t1`"
    T@2: | | | | | | | | opt: field: "c2"
    T@2: | | | | | | | | opt: equals: "22896242"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
    T@2: | | | | | | | | opt: (null): ending struct
    
    -- 2、 T2表,k2索引在前面
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k2` (`c2`),
      UNIQUE KEY `k3` (`c3`)
    
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t2`"
    T@2: | | | | | | | | opt: field: "c2" (C2在前面因此使用k2索引)
    T@2: | | | | | | | | opt: equals: "22896242"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t2`"
    T@2: | | | | | | | | opt: field: "c3"
    T@2: | | | | | | | | >convert_string
    T@2: | | | | | | | | | >alloc_root
    T@2: | | | | | | | | | | enter: root: 0x40a8068
    T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
    T@2: | | | | | | | | | <alloc_root 304
    T@2: | | | | | | | | <convert_string 2610
    T@2: | | | | | | | | opt: equals: "'Louise Garrett'"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
    T@2: | | | | | | | | opt: (null): ending struct
    

    4. 问题延伸

    到这里,我们不禁有疑问,这两个索引的代价真的是一样吗?

    就让我们用 mysqlslap 来做个简单对比测试吧:

    -- 测试1:对c2列随机point select
    mysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = cast(round(rand()*2147265929) as unsigned); select * from t1 where c2 = @xid" -c 8
    ...
        Average number of seconds to run all queries: 9.483 seconds
    ...
    
    
    -- 测试2:对c3列随机point select
    mysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = concat('u',cast(round(rand()*2147265929) as unsigned)); select * from t1 where c3 = @xid" -c 8
    ...
        Average number of seconds to run all queries: 10.360 seconds
    ...
    

    可以看到,如果是走 c3 列索引,耗时会比走 c2 列索引多出来约 7% ~ 9%(在我的环境下测试的结果,不同环境、不同数据量可能也不同)。

    看来,MySQL优化器还是有必要进一步提高的哟 :)

    测试使用版本:GreatSQL 8.0.25(MySQL 5.6.39结果亦是如此)。

    Enjoy MySQL :)

    您可能对下面这些文章也感兴趣:

    1. 『叶问』#40,MySQL进程号、连接ID、查询ID、InnoDB线程与系统线程如何对应 一文快速掌握 MySQL进程号、连接ID、查询ID、InnoDB线程与系统线程的对应关系。 有时候,怀疑某个M […]...
    2. MySQL 5.6.17/Percona5.6.16/MariaDB 10.0.11/OneSQL 5.6.16压测瓶颈分析 之前我进行了MySQL 5.6.17/Percona5.6.16/MariaDB 10.0.11/OneSQL […]...
    3. 基于开源应用快速构建HTAP系统 利用ProxySQL、MySQL、ClickHouse快速构建HTAP系统 1. 关于ClickHou […]...

    Powered by YARPP.



沪ICP备19023445号-2号
友情链接