也就是说,从纯噪声开始,我们进行了很多小的“去噪”变换,逐渐地将噪声的分布转换为数据的分布,这样就可以利用得到的数据分布进行采样,得到新的数据。相较于以往的深度生成模型,扩散模型生成的数据质量更高、多样性更强,并且扩散模型的结构也很灵活,这使得扩散模型很快成为了研究和应用的热点。《扩散模型 : 生成式AI模型的理论、应用与代码实践》是一本从浅入深、全面系统地介绍扩散模型的书籍,其具备丰富的实践案例,以及前沿视角,受到一众专家、学者的认可、推荐。它们提供了端到端训练的框架,并提供了更灵活的生成建模能力。