加密一般分为对称加密(Symmetric Key Encryption)和非对称加密(Asymmetric Key Encryption)
常见的对称加密算法:DES、3DES、DESX、Blowfish、IDEA、RC4、RC5、RC6 和 AES
常见的非对称加密算法:RSA、ECC (移动设备用)、Diffie-Hellman、El Gamal、DSA (数字签名用)
常见的 Hash 算法:MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1
分组加密算法中,有ECB,CBC,CFB,OFB这几种算法模式
网络安全通信中要用到两类密码算法,加密一般分为对称加密(Symmetric Key Encryption)和非对称加密(Asymmetric Key Encryption)。对称密码算法有时又叫传统密码算法、秘密密钥算法或单密钥算法,非对称密码算法也叫公开密钥密码算法或双密钥算法。对称密码算法的加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。
对称算法又可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度既考虑到分析破译密码的难度,又考虑到使用的方便性。后来,随着破译能力的发展,分组长度又提高到128位或更长。
常用的采用对称密码术的加密方案有5个组成部分:
分组加密算法中,一般有ECB,CBC,CFB,OFB这几种算法模式。
DES是Data Encryption Standard(数据加密标准)的缩写。它是由IBM公司研制的一种对称密码算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,三十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。
DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。其中有极少数被认为是易破解的弱密钥,但是很容易避开它们不用。所以保密性依赖于密钥。
DES加密的算法框架如下:
DES解密过程:
加密工作模式:ECB、CBC、CFB、OFB
ECB 电子密码本模式:Electronic codebook 每块堵路加密
优点:分块处理 并行处理
缺点:同样的原文得到相同的密文 容易被攻击
CBC 密码分组链接:Cipher-block chaining 每块加密依赖前一块的密文
优点:同样的原文得到不同的密文 原文微下的改变影响后面全部密文
缺点:加密需要串行处理 误差传递
CFB Cipher Feedback (CFB)/密文反馈模式
OFB Output Feedback (OFB)/输出反馈模式
DSA(Digital Signature Algorithm)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(DigitalSignature Standard)。
DSA加密算法主要依赖于整数有限域离散对数难题,素数P必须足够大,且p-1至少包含一个大素数因子以抵抗Pohlig &Hellman算法的攻击。M一般都应采用信息的HASH值。DSA加密算法的安全性主要依赖于p和g,若选取不当则签名容易伪造,应保证g对于p-1的大素数因子不可约。其安全性与RSA相比差不多。
DSA 一般用于数字签名和认证。在DSA数字签名和认证中,发送者使用自己的私钥对文件或消息进行签名,接受者收到消息后使用发送者的公钥来验证签名的真实性。DSA只是一种算法,和RSA不同之处在于它不能用作加密和解密,也不能进行密钥交换,只用于签名,它比RSA要快很多.
椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。
椭圆曲线密码学的主要优势是在某些情况下它比其他的方法使用更小的密钥 — — 比如RSA加密算法 — — 提供相当的或更高等级的安全。椭圆曲线密码学的另一个优势是可以定义群之间的双线性映射,基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。
椭圆曲线密码学,是一种建立公开密钥加密的算法,也就输非对称加密.类似的还有RSA,EIGamal算法等.ECC被公认为在给定密钥长度下最安全的加密算法.
双线性映射解释:在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。
公开密钥加密(英语:public-key cryptography,又译为公开密钥加密),也称为非对称加密(asymmetric cryptography),一种密码学算法类型,在这种密码学方法中,需要一对密钥(其实这里密钥说法不好,就是“钥”),一个是私人密钥,另一个则是公开密钥。这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。–wiki百科
单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:
SHA-1 与 MD5 的比较 :
因为二者均由 MD4 导出,SHA-1 和 MD5 彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行供给的安全性:最显著和最重要的区别是 SHA-1 摘要比 MD5 摘要长 32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对 MD5 是 2128 数量级的操作,而对 SHA-1 则是 2160 数量级的操作。这样,SHA-1 对强行攻击有更大的强度;
在管理方面:公钥密码算法只需要较少的资源就可以实现目的,在密钥的分配上,两者之间相差一个指数级别(一个是 n 一个是 n2)。所以私钥密码算法不适应广域网的使用,而且更重要的一点是它不支持数字签名;
在安全方面:由于公钥密码算法基于未解决的数学难题,在破解上几乎不可能。对于私钥密码算法,到了 AES 虽说从理论来说是不可能破解的,但从计算机的发展角度来看。公钥更具有优越性;
从速度上来看:AES 的软件实现速度已经达到了每秒数兆或数十兆比特。是公钥的 100 倍,如果用硬件来实现的话这个比值将扩大到 1000 倍。
对称加密优缺点:对称加密相比非对称加密算法来说,加解密的效率要高得多、加密速度快。但是缺陷在于对于密钥的管理和分发上比较困难,不是非常安全,密钥管理负担很重。
非对称加密优缺点:安全性更高,公钥是公开的,密钥是自己保存的,不需要将私钥给别人。缺点:加密和解密花费时间长、速度慢,只适合对少量数据进行加密。
代码托管已上传到Github,请访问连接查看:Go语言实现加密算法
参考: