IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    Kaggle竞赛手写问题识别

    chenxia发表于 2023-06-05 10:44:01
    love 0

    最近看了Python的PEP8,其中对于代码规范的要求是注释主要选择英文,本次项目的进行中也在竭力的进行,但是发现效果并不是很好,如果为了别人的代码可读性的标准而导致自己的代码低效,这个显然是不可取的。never mind,本章主要介绍CNN届的Hello world————手写数字识别。自己从无到有的敲一下。

    项目介绍

    MNIST(modifed national institute of standard and technology) is the “Hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classficiation algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for resource for researchers and leaaners alike.

    In this competition, your goal is to correctly identify digits from a dataset from a dataset of tens of thousands of handwritten images. We have curated a set of tutorial-style kernels which cover everything from regression to neural networks. We encourage you to experiment with different algorithms to learn first-hand works well and how techique compare.

    Kaggle页面简介

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    import numpy as np # 线性代数
    import pandas as pd # 数据预处理
    import matplotlib.pyplot as plt # 绘图
    import torch
    import torch.nn as nn
    from torch.utils.data import DataLoader
    from sklearn.model_selection import train_test_split
    import torchvision.transforms as transforms
    from torch.utils.data import Dataset
    device = torch.device('mps') # mps需要torch>=1.13

    数据集

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    # csv -> pd.DataFrame
    trainDF = pd.read_csv('../DigitRecongnier/data/train.csv')

    # pd.DataFrame -> numpy.array
    labels = trainDF['label'].values
    train = trainDF.drop(['label'],axis=1)
    features = train.values

    # 划分数据集和测试集
    features_train,features_test,targets_train,targets_test = train_test_split(features,labels,test_size=0.2,random_state=42)
    # def split_data(features,labels,per):
    # '''按照per划分数据集'''
    # split_len=int(per*len(labels))
    # trainFeatures = features[:split_len]
    # trainLabels = labels[:split_len]
    # valFeatures = features[split_len:]
    # valLabels = labels[split_len:]
    # return trainFeatures,trainLabels,valFeatures,valLabels
    # trainFeatures,trainLabels,valFeatures,valLabels = split_data(features,labels,0.8)

    # numpy.array -> tensor
    featuresTrain = torch.from_numpy(features_train)/255
    targetsTrain = torch.from_numpy(targets_train)
    featuresTest = torch.from_numpy(features_test)/255
    targetsTest = torch.from_numpy(targets_test)

    # trainF = torch.tensor(trainFeatures)
    # trainFS = trainF.reshape((-1,28,28))
    # # 证明前后是一样的
    # trainF[0] == trainFS[0].reshape(1,-1)

    # # tensor -> dataset(using tensordataset)
    # # 缺点是不能使用transform
    # train = torch.utils.data.TensorDataset(featuresTrain,targetsTrain)
    # test = torch.utils.data.TensorDataset(featuresTest,targetsTest)

    # tensor -> data (using super the dataset)
    class TensorDatasetSelf(Dataset):
    ''' tensor dataset 继承 dataset 只需要重载len和getitem就可以'''
    def __init__(self,features,target,transform=None) -> None:
    super().__init__()
    self.datatensor = features
    self.labeltensor = target
    self.transform = transform

    def __len__(self):
    return self.datatensor.size(0)

    def __getitem__(self, index):
    cur = self.datatensor[index]
    X = cur.reshape((1,28,28))
    return X,self.labeltensor[index]

    # 定义一个变换,将数据缩放到 0 到 1 的范围内
    # 坑:Resize返回一个image
    # transform = transforms.Compose([transforms.Resize((28,28)),transforms.ToTensor()])

    train = TensorDatasetSelf(featuresTrain,targetsTrain)
    test = TensorDatasetSelf(featuresTest,targetsTest)

    Hint01 : torch构建dataset的几种方式

    1. 自定义Dataset类,可以通过继承torch.utils.data.Dataset来实现,需要重写__len__(),getitem()类
    2. 使用tensorDataset类,是一个包装器类,实现从tensor到dataset的直接的转变

    Hint02 Dataset中添加数据预处理

    我们输入features、labels进入dataset类之后,在输出的时候我们可能希望对其进行一些预处理

    比如图像增强常用的预处理、增强、旋转等等

    from torchvision import transforms

    transforms.compose()类似pipeline,来实现一系列的transform操作,常见的transform操作有:

    1. transforms.ToTensor()
    2. 自定义transforms

    数据迭代器

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    # 构建数据集的超参数设置
    batchsize = 128
    epoches = 20

    # dataset -> dataloader
    train_iter = DataLoader(train,batch_size=batchsize,shuffle=False)
    test_iter = DataLoader(test,batch_size=batchsize,shuffle=False)

    # tensor 也可以 plt!
    for X,y in train_iter:
    print(X.shape)
    cur = X[0][0]
    plt.imshow(cur)
    plt.show()
    break

    手写数字

    模型

    经典的CNN方面的论文,无论他最后需要实现的有多复杂,在深度学习的pipeline中,只是占据着模型构建的角色。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    # 使用经典的CNN模型
    class LeNet(nn.Module):
    def __init__(self):
    '''input :28*28,output:10'''
    super().__init__()

    # Convolution 1
    self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=0)
    self.relu1 = nn.ReLU()

    # Max pool 1
    self.maxpool1 = nn.MaxPool2d(kernel_size=2)

    # Convolution 2
    self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0)
    self.relu2 = nn.ReLU()

    # Max pool 2
    self.maxpool2 = nn.MaxPool2d(kernel_size=2)

    # Fully connected 1
    self.fc1 = nn.Linear(32 * 16, 10)

    def forward(self, x):
    # Convolution 1
    out = self.cnn1(x)
    out = self.relu1(out)

    # Max pool 1
    out = self.maxpool1(out)

    # Convolution 2
    out = self.cnn2(out)
    out = self.relu2(out)

    # Max pool 2
    out = self.maxpool2(out)

    # flatten
    # out = out.view(1, -1)
    out = out.view(out.size(0), -1)

    # Linear function (readout)
    out = self.fc1(out)

    return out

    model = LeNet()

    # testTensor = torch.randint(0,255,(1,28,28),dtype=torch.float)
    # model (testTensor)

    损失函数

    1
    loss = nn.CrossEntropyLoss()

    优化器

    1
    2
    learning_rate = 0.03
    opt = torch.optim.SGD(model.parameters(),lr=learning_rate)

    训练

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    # trian with(data_iter,model,loss,optimizer)

    # 将模型添加到device中
    model =model.to(device)

    # 训练多个epoch
    for epoch in range(epoches):
    # 训练多个iter
    for X,y in train_iter:
    #
    X,y = X.to(device),y.to(device)
    model.train()
    opt.zero_grad()
    l = loss(model(X),y)
    l.mean().backward()
    opt.step()

    # to choice a better model,this should be train ata

    测试

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    valDF = pd.read_csv('../DigitRecongnier/data/test.csv')
    valtensor = torch.tensor(valDF.values,dtype=torch.float,device=device)
    valtensor = valtensor.view((-1,1,28,28))
    result = model(valtensor)
    res = torch.argmax(result,dim=1)
    index =pd.Series(np.arange(1,28001))
    res =res.to('cpu')
    label = pd.Series(res)
    df = pd.DataFrame({'ImageId':index,'Label':label})
    df.to_csv('../DigitRecongnier/data/sample_submission.csv',index=False)

    提交结果



沪ICP备19023445号-2号
友情链接