LocalAI是一个开源的、免费的OpenAI替代品,它允许用户在本地环境中运行大型语言模型(LLMs)、生成图像和音频等。它支持多种模型系列,包括ggml、gguf、GPTQ、onnx和TensorFlow兼容的模型,如llama、llama2、rwkv、whisper、vicuna、koala、cerebras、falcon、dolly、starcoder等。
LocalAI提供了容器镜像和二进制文件,兼容各种容器引擎,如Docker、Podman和Kubernetes。容器镜像发布在quay.io和Docker Hub上。二进制文件可以从GitHub下载。
LocalAI提供了多种镜像来支持不同的环境。这些镜像可以在quay.io和Docker Hub上找到。
可用的镜像类型:
有关详细的分步介绍,可以参考官方《入门指南》。对于急于求成的人,以下是使用docker启动带有phi-2的LocalAI实例的简单命令(笔者是在自己的NAS运行的):
# 创建models目录
mkdir models
#将你需要的模型拷贝到models目录
cp your-model.gguf models/
# 启动Docker容器
docker run -p 8080:8080 \
-v $PWD/models:/models \
-ti --rm quay.io/go-skynet/local-ai:latest \
--models-path /models --context-size 700 --threads 4
等到LocalAI启动后,就可以通过发送HTTP请求到此地址来与LocalAI进行交互。例如,可以使用以下命令发送一个文本生成请求:
curl http://localhost:8080/v1/completions
-H "Content-Type: application/json"
-d
'{
"model": "your-model.gguf",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
这将返回一个包含生成文本的JSON对象。更多关于如何使用LocalAI的信息,可以参考官方文档和示例代码。
当然,我们也可以将LocalAI接入到one-api平台,由one-api来统一管理模型,然后再通过FastGPT来调用大模型,完美替代OpenAI,真香!
原创不易,如果觉得此文对你有帮助,不妨点赞+收藏+关注,你的鼓励是我持续创作的动力!