Given an array nums
of n
integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]]
such that:
0 <= a, b, c, d < n
a
, b
, c
, and d
are distinct.nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
A follow up of 3 sum.
From 3 sum what you can learn? Reduce to 2 sum. So for 4 sum we many want to reduce to 3 sum and then to 2 sum.
So here is a recursive process and the base condition is k == 2.
When k is bigger than 2, we go through all the unvisited numbers and make it a member, and recursive make the target (target - this number), and less number.
class Solution { public List<List<Integer>> fourSum(int[] nums, int target) { Arrays.sort(nums); return KSum(nums, target, 4, 0); } private List<List<Integer>> KSum(int[] nums, long target, int k, int i) { List<List<Integer>> res = new ArrayList<>(); if (k == 2) { twoSum(res, nums, target, i); } else { for (int j = i; j < nums.length; j++) { List<List<Integer>> temp = KSum(nums, (long) target - (long) nums[j], k - 1, j + 1); if (temp != null) { // if temp is null means there is no solution for these number combanation. for (List<Integer> list : temp) { list.add(0, nums[j]); } } while (j + 1 < nums.length && nums[j] == nums[j + 1]) { j++; } res.addAll(temp); } } return res; } private void twoSum(List<List<Integer>> res, int[] nums, long target, int i) { int lo = i, hi = nums.length - 1; while (lo < hi) { long num = (long) nums[lo] + (long) nums[hi]; if (num == target) { List<Integer> list = new ArrayList<>(); list.add(nums[lo]); list.add(nums[hi]); res.add(new ArrayList<>(list)); while (lo + 1 <= hi && nums[lo] == nums[lo + 1]) { lo++; } while (lo <= hi - 1 && nums[hi] == nums[hi - 1]) { hi--; } lo++; hi--; } else if (num > target) { hi--; } else { lo++; } } } }