IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    34. Find First and Last Position of Element in Sorted Array

    10k发表于 2023-07-09 00:00:00
    love 0

    Question

    Given an array of integers nums sorted in non-decreasing order, find the starting and ending position of a given target value.

    If target is not found in the array, return [-1, -1].

    You must write an algorithm with O(log n) runtime complexity.

    Algorithm

    For this problem, I firstly came up a trivial binary search, when we encounter the target, we use a while loop to find the left and right side, however this is O(n) in worst case.

    The standard solution is to use two separate binary search. Actually I came up this idea at first to keep the O(Log(n)) time, but I tried to put the left and right side handle in one loop which is impossible. So I quit. Actually we can separated them they it can be implemented.

    Code

    Code1(Time: O(n))

    class Solution {
        public int[] searchRange(int[] nums, int target) {
            // O(n)
            int leftBound = -1, rightBound = -1;
            int[] res = new int[]{leftBound, rightBound};
            if (nums == null || nums.length == 0) {
                return res;
            }
            
            int left = 0, right = nums.length - 1;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] > target) {
                    right = mid - 1;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else if (nums[mid] == target) {
                    leftBound = mid;
                    rightBound = mid;
                    while (leftBound >= 0 && nums[leftBound] == target) {
                        leftBound--;
                    }
                    while (rightBound <= nums.length - 1 && nums[rightBound] == target) {
                        rightBound++;
                    }
                    return new int[]{leftBound+1, rightBound-1};
                }
            }
            return res;
        }
    }
    

    Code2(Time:O(log(n)))

    class Solution {
        public int[] searchRange(int[] nums, int target) {
            // O(log(n))
            int leftBound = -1, rightBound = -1;
            int[] res = new int[]{leftBound, rightBound};
            if (nums == null || nums.length == 0) {
                return res;
            }
            
            boolean exist = false;
            int left = 0, right = nums.length;
            while (left < right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] > target) {
                    right = mid;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid;
                    exist = true;
                }
            }
            res[0] = left;
            
            left = 0;
            right = nums.length;
            while (left < right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] > target) {
                    right = mid;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else {
                    left = mid + 1;
                }
            }
            res[1] = right - 1;
            
            return exist ? res : new int[]{-1, -1};
        }
    }
    

    Don't try to accomplish all the thing in one condition, separate them and finally you may merge them. At first I tried

    if (nums[mid] > target) {
        right = mid;
    } else if (nums[mid] < target) {
        left = mid + 1;
    } else {
        right = mid;
        exist = true;
    }
    

    with

    if (nums[mid] >= target) {
        if (nums[mid] == target) {
            //xxx
        }
        right = mid;
    } else if (nums[mid] < target) {
        left = mid + 1;
    } 
    

    This lead me another road which adding complexity.



沪ICP备19023445号-2号
友情链接