Given an array of integers nums
sorted in non-decreasing order, find the starting and ending position of a given target
value.
If target
is not found in the array, return [-1, -1]
.
You must write an algorithm with O(log n)
runtime complexity.
For this problem, I firstly came up a trivial binary search, when we encounter the target, we use a while loop to find the left and right side, however this is O(n) in worst case.
The standard solution is to use two separate binary search. Actually I came up this idea at first to keep the O(Log(n)) time, but I tried to put the left and right side handle in one loop which is impossible. So I quit. Actually we can separated them they it can be implemented.
class Solution { public int[] searchRange(int[] nums, int target) { // O(n) int leftBound = -1, rightBound = -1; int[] res = new int[]{leftBound, rightBound}; if (nums == null || nums.length == 0) { return res; } int left = 0, right = nums.length - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] > target) { right = mid - 1; } else if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] == target) { leftBound = mid; rightBound = mid; while (leftBound >= 0 && nums[leftBound] == target) { leftBound--; } while (rightBound <= nums.length - 1 && nums[rightBound] == target) { rightBound++; } return new int[]{leftBound+1, rightBound-1}; } } return res; } }
class Solution { public int[] searchRange(int[] nums, int target) { // O(log(n)) int leftBound = -1, rightBound = -1; int[] res = new int[]{leftBound, rightBound}; if (nums == null || nums.length == 0) { return res; } boolean exist = false; int left = 0, right = nums.length; while (left < right) { int mid = left + (right - left) / 2; if (nums[mid] > target) { right = mid; } else if (nums[mid] < target) { left = mid + 1; } else { right = mid; exist = true; } } res[0] = left; left = 0; right = nums.length; while (left < right) { int mid = left + (right - left) / 2; if (nums[mid] > target) { right = mid; } else if (nums[mid] < target) { left = mid + 1; } else { left = mid + 1; } } res[1] = right - 1; return exist ? res : new int[]{-1, -1}; } }
Don't try to accomplish all the thing in one condition, separate them and finally you may merge them. At first I tried
if (nums[mid] > target) { right = mid; } else if (nums[mid] < target) { left = mid + 1; } else { right = mid; exist = true; }
with
if (nums[mid] >= target) { if (nums[mid] == target) { //xxx } right = mid; } else if (nums[mid] < target) { left = mid + 1; }
This lead me another road which adding complexity.