在现代软件开发和运维的领域,Docker 和 Kubernetes (K8s) 已经成为不可或缺的技术工具。对于架构师来说,理解这些技术的核心概念不仅有助于系统设计,同时也是对系统稳定性、可扩展性和运维效率的强大保障。
本文我们将从架构师的角度出发,聊下 Docker 和 K8s 的核心概念或逻辑,并阐述如何将这些技术应用于企业级系统中。文章不仅会介绍背后的概念,还会结合实际经验,分享一些对架构设计的思考和观点。
Docker 的核心在于容器化技术。从架构的角度来看,容器化的本质就是对应用及其依赖的封装,使其在任何环境中都能够保持一致的运行效果。
在传统的应用部署中,开发、测试和生产环境往往会存在差异,导致「在我电脑上能跑」的问题频繁出现。这种问题的根本原因在于环境的不一致:不同的操作系统、不一致的库版本、系统设置的差异等。这些问题在复杂的企业系统中尤为突出,开发团队与运维团队之间经常出现摩擦。
Docker 通过容器化技术解决了上述问题。容器不仅包含了应用程序的代码,还包括了运行该应用所需的所有依赖项(例如库、配置文件等)。更重要的是,Docker 容器之间相互隔离,并且与宿主机共享同一个内核。这使得容器更加轻量化,并且能够快速启动和扩展。
对于架构师而言,Docker 的核心价值在于环境一致性和快速迭代。无论开发、测试还是生产环境,只要是 Docker 容器,运行效果就会保持一致。而且,构建、发布、部署的流程可以高度自动化,大大提升了开发团队的生产力。
Docker 镜像是容器的基础,而镜像的核心逻辑则是分层文件系统。
Docker 镜像通过分层文件系统(例如 UnionFS)来构建和管理。每一层都是只读的,只有最顶层的容器层是可写的。这种设计带来了两个明显的好处:
架构师在设计容器化应用时,通常需要编写 Dockerfile。一个好的 Dockerfile 设计不仅影响镜像的大小,还影响启动时间和部署效率。比如:
COPY
而不是 ADD
来复制文件,确保镜像的可控性。这些细节看似简单,但在大规模系统中,Dockerfile 的优化可以显著提升 CI/CD 流水线的效率。
Docker 实质上是一个进程管理工具,它通过 Linux 内核的一些特性,比如 Namespace 和 Cgroups,来实现进程的隔离和资源限制,从而达到轻量级虚拟化的效果。
docker run
:创建并运行一个容器。docker ps
:查看当前运行的容器。docker images
:查看本地的 Docker 镜像列表。docker stop
:停止一个运行中的容器。docker rm
:删除一个已停止的容器。docker rmi
:删除本地的 Docker 镜像。Docker 本身解决了单个容器的部署问题,但是在企业级应用中,往往需要管理数百甚至数千个容器。如何有效地编排、管理和监控这些容器成为了新的难题,这就是 Kubernetes 或其他容器编排工具存在的意义。
对于架构师而言,理解 Kubernetes 的核心逻辑首先要明白容器编排的挑战。随着微服务架构的普及,单体应用逐渐被多个独立的服务所取代。这些服务以容器的形式运行,带来了以下几个挑战:
Kubernetes 的设计目标就是解决这些问题,并为大规模容器化应用提供自动化运维的能力。
Kubernetes 由多个组件组成,它们共同协作,提供容器编排的核心功能,从大的层面看,主要是有以下两块,如下图所示:
Image Source: Kubernetes
控制平面是 Kubernetes 的大脑,负责协调集群中的资源和工作负载。
工作节点是实际运行容器的地方,每个节点上都会运行:
Kubernetes 的核心概念包括 声明式 API、控制器、Pod、Service、Namespace、ConfigMap、Secret、Volume 等。接下来我们将逐一聊下这些概念的产生原因、解决的问题以及应用的场景。
在传统的 IT 运维中,系统管理员通常使用命令式的操作方法:执行某个命令来启动服务,或者手动调整资源的分配。这种方式存在几个问题:
Kubernetes 引入了 声明式 API,通过这种方式,用户只需要声明期望的系统状态,而不需要关心如何具体实现。这种设计解决了以下问题:
无论是创建 Pod、部署服务,还是修改资源配置,用户都只需要编写 YAML 文件,然后 Kubernetes 会自动处理剩下的事情。例如:
容器的生命周期是动态的,Pod 可能会在任何时候崩溃、被删除或需要扩展。对于大规模的容器集群,手动管理这些容器的生命周期不仅复杂,而且不具备高效性和可靠性。传统的运维方式无法很好地解决这些问题。
Kubernetes 通过 控制器模式 解决了这一问题。控制器是 Kubernetes 内部的核心组件之一,它能够持续监控集群中的当前状态,并采取措施将其调整为用户声明的期望状态。控制器的引入解决了以下问题:
ReplicationController
会确保有指定数量的 Pod 实例运行,DeploymentController
则负责管理应用的更新和回滚。我们工作中常见的控制器包括:
在 Kubernetes 中,容器是应用的最小运行单元,但容器本身并不足以满足所有应用场景。例如,某些容器需要共享网络和存储,或者多个容器需要协同工作。直接管理这些容器的运行和调度会非常复杂。
为此,Kubernetes 团队基于对微服务和分布式系统的深刻理解,引入了 Pod 概念,它是 Kubernetes 中的最小调度单元。一个 Pod 可以包含一个或多个紧密耦合的容器,容器之间共享网络和存储。Pod 的引入解决了以下问题:
Pod 主要用于以下场景:
在 Kubernetes 中,Pod 是动态的,可能会被销毁、重启或替换。这导致一个问题:随着 Pod 的 IP 地址是动态分配的,应用之间如何发现和通信?传统的固定 IP 和 DNS 方式在这种动态环境中无法满足需求。
Kubernetes 引入了 Service 概念,解决了服务发现和负载均衡问题。Service 抽象出一组具有相同功能的 Pod,并为它们提供一个固定的虚拟 IP 和 DNS 名称,解决了以下问题:
Service 广泛应用于 Kubernetes 中的服务发现和负载均衡,常见的场景包括:
NodePort
、LoadBalancer
或 Ingress
实现外部访问。在 Kubernetes 集群中,用户可能会管理多个项目或团队的资源。为了避免资源冲突(如不同项目使用相同的资源名称),以及为不同的团队提供隔离和权限控制,Kubernetes 需要提供一种方法来划分集群中的资源。
Namespace 是 Kubernetes 中用于逻辑上隔离集群资源的机制。通过 Namespace,Kubernetes 解决了以下问题:
Namespace 主要用于以下场景:
在传统的应用部署中,应用的配置通常通过环境变量或配置文件进行管理。但是在容器化环境下,这种做法并不灵活。此外,应用可能还需要管理一些敏感信息(如数据库密码、API 密钥等),这些信息不能直接硬编码在镜像中。
Kubernetes 提供了 ConfigMap 和 Secret 来分别管理应用的非敏感和敏感配置信息,解决了以下问题:
ConfigMap 和 Secret 主要用于:
容器的本质是轻量级、无状态的计算单元,它们在生命周期结束时默认会丢失所有的状态(例如文件系统中的数据)。这对于一些无状态应用来说是可以接受的,但对于有状态应用(如数据库、文件存储系统等),这种行为显然不可行。无论是为应用保存数据,还是在容器之间共享文件,依赖于容器内部的文件系统都无法满足这种需求。
此外,容器在不同的节点上运行时,它们的本地存储是不共享的,这意味着如果容器迁移到另一个节点,数据也会丢失。因此,必须有一种机制来实现数据的持久化和在不同容器之间共享文件。
Kubernetes 的 Volume(卷) 机制为容器提供了持久化存储和数据共享的能力,以解决以下问题:
Kubernetes 提供了多种 Volume 类型,以满足不同的存储需求:
emptyDir:
emptyDir
是最简单的 Volume 类型,当 Pod 在节点上创建后,Kubernetes 自动为 Pod 分配一个空目录,并将其挂载到容器中。emptyDir
的生命周期与 Pod 绑定,当 Pod 被删除时,emptyDir
中的数据也会被删除。hostPath:
hostPath
将节点的文件系统中的某个目录挂载到 Pod 中的容器。通过这种方式,Pod 可以访问节点本地的文件系统。**Persistent Volume (PV) 和 Persistent Volume Claim (PVC)**:
Persistent Volume (PV)
是集群管理员配置的持久化存储资源,而 Persistent Volume Claim (PVC)
是用户对存储的请求。用户通过 PVC 声明自己需要的存储资源,Kubernetes 会自动将 PVC 绑定到相应的 PV。**NFS (Network File System)**:
NFS
是一种网络文件系统,允许多个客户端通过网络访问同一个文件系统。Kubernetes 支持使用 NFS 作为 Volume,多个 Pod 可以通过 NFS 同时访问同一个存储卷。Cinder/GlusterFS/Azure Disk/AWS EBS:
ConfigMap 和 Secret:
CSI(Container Storage Interface):
Volume 在 Kubernetes 中的应用场景非常广泛,主要包括以下几个方面:
持久化数据库存储:数据库(如 MySQL、PostgreSQL 等)通常需要持久化存储来保存数据。通过使用 Persistent Volume 和 Persistent Volume Claim,数据库可以在容器重启或迁移时保持数据不丢失。
日志收集和共享:在多容器 Pod 中,一个容器可能负责生成日志,另一个容器负责收集这些日志。通过 emptyDir
或 hostPath
,日志容器可以共享一个文件系统目录,确保日志可以被正确收集。
文件上传和存储:在一些 Web 应用中,用户可能会上传文件。为了确保这些文件即使在容器重启后仍然可用,可以将文件存储在持久化 Volume 中,如 NFS、AWS EBS 或 Google Persistent Disk。
配置和机密管理:应用程序通常需要加载配置文件或使用敏感信息(如密码、证书)。通过将 ConfigMap 和 Secret 作为 Volume 挂载到 Pod 中,可以简化配置管理,并确保敏感信息的安全性。
跨节点共享数据:某些应用需要在多个节点之间共享数据。例如,在分布式文件存储系统中,多个 Pod 可能需要同时访问同一个存储卷。通过使用 NFS 或其他网络文件系统,多个 Pod 可以跨节点共享数据。
Kubernetes 的 Volume 机制是为了解决容器化应用中的存储问题而设计的,它通过提供持久化存储、跨容器共享文件、敏感信息管理等功能,使得容器可以胜任更多有状态应用的场景。架构师在设计应用时,应该根据应用的需求选择合适的 Volume 类型,以确保数据的持久性、安全性和高效性。
Volume 的引入不仅解决了容器无状态的局限性,还通过与 Kubernetes 的调度和编排系统结合,提供了更为灵活、可靠的存储解决方案。
通过理解 Kubernetes 的这些核心概念,我们可以更好地设计和管理基于容器的应用,并通过 Kubernetes 提供的自动化能力提高系统的弹性和可扩展性。
Kubernetes 的主要目标是通过自动化的手段解决容器化应用管理的复杂性,主要体现在以下几个方面:
kubectl get pods
:查看当前集群中运行的 Pod 列表。kubectl describe pod <pod-name>
:查看 Pod 的详细信息。kubectl apply -f <file>
:通过定义文件部署资源。kubectl delete pod <pod-name>
:删除指定的 Pod。kubectl scale deployment <deployment-name> --replicas=<num>
:扩展或缩减 Deployment 的副本数。Kubernetes 是一个容器编排平台,而 Docker 是一种容器运行时。Kubernetes 需要依赖容器运行时来实际运行容器。在早期,Docker 是 Kubernetes 的默认容器运行时,但现在 Kubernetes 通过 CRI(Container Runtime Interface) 支持多种运行时,比如 containerd 和 CRI-O。实际上,Kubernetes 从 1.20 开始已经逐渐移除了对 Docker 的直接支持,推荐使用 containerd 等原生的容器运行时。
Docker 的主要功能是将应用程序及其依赖项打包到一个独立的容器中,这样可以确保应用在任何环境下都能一致地运行。Docker 提供了一个标准的接口和工具集,使得开发者能够以一种统一的方式构建、分发和运行容器。
Kubernetes 则是一个容器编排平台,它的作用是管理成千上万个容器的生命周期。Kubernetes 并不直接处理容器的创建和启动,而是通过容器运行时(Container Runtime)来执行这些操作。Docker 曾是 Kubernetes 默认的容器运行时,虽然 Kubernetes 自身支持多种容器运行时(如 containerd、CRI-O),但 Docker 仍然是其中广泛使用的选择。
Docker 和 Kubernetes 的关系可以概括为以下几点:
虽然 Docker 和 Kubernetes 都涉及容器技术,但它们的职责不同:
Docker:容器化工具
Docker 的职责是将应用程序及其依赖打包成容器。它专注于应用的开发、打包和本地运行。Docker 提供了构建镜像、运行容器、网络连接、存储挂载等功能,但它并不负责容器的编排和集群管理。
Kubernetes:容器编排平台
Kubernetes 的任务是管理容器集群中的应用,确保它们可以自动化部署、扩展、负载均衡、服务发现、故障恢复等。Kubernetes 提供了一整套高层次的管理机制,帮助运维人员管理大规模容器集群。
简单来说,Docker 负责“如何打包和运行容器”,而 Kubernetes 负责“如何管理和编排大量容器”。
Docker 和 Kubernetes 的结合带来了许多优势,这些优势在现代软件开发和运维中尤为重要:
开发与运维的解耦:Docker 允许开发人员在本地构建、测试应用,并将应用打包成标准化的镜像。这个镜像可以在任何支持 Docker 或 Kubernetes 的环境中运行,确保了从开发到运维的顺畅过渡。运维团队不再需要关心应用的内部实现,只需要负责部署和管理容器。
高可用性和自动化运维:Kubernetes 通过强大的编排功能,自动管理容器的生命周期,并提供了自动扩展、负载均衡、故障恢复等功能。结合 Docker 的容器化技术,Kubernetes 可以在大规模集群中确保应用的高可用性和可靠性。
持续集成与持续部署(CI/CD):Docker 和 Kubernetes 的结合使得 CI/CD 管道更加高效和自动化。开发人员可以使用 Docker 构建镜像,并通过 Kubernetes 实现自动化部署和更新。结合工具如 Jenkins、GitLab CI、ArgoCD 等,整个 CI/CD 流程可以实现无缝集成。
跨环境一致性:Docker 镜像确保了应用在不同环境(开发、测试、生产)中的一致性,而 Kubernetes 负责跨多个节点和数据中心调度这些镜像,确保应用在不同环境中都能一致运行。这种跨环境一致性极大地简化了调试和运维的复杂性。
Docker 和 Kubernetes 的不仅仅是技术上的革新,它们背后的设计理念深刻影响了现代软件架构的演进。对于架构师而言,理解这些技术的核心逻辑有助于更好地设计系统,提升开发效率和系统的可扩展性。
同时,Docker 和 K8s 也带来了新的挑战,尤其是在复杂的企业级系统中,如何合理利用它们的功能,如何权衡性能与成本,如何保障安全性,都是架构师需要深入思考的问题。
在未来,随着云原生技术的进一步发展,Docker 和 Kubernetes 的应用场景会越来越广泛。作为架构师,唯有不断学习和实践,才能在技术浪潮中立于不败之地。
以上。