原文转载自《rk3588对npu的再探索,yolov5使用rknn模型推理教程》 🍉零、引言 本文完成于2022-07-02 22:22:27。 博主刚开始在瑞芯微ITX-3588J-8K的开发板上跑了官方的yolov5目标检测算法,检测了ip相机rtsp视频流,但是每帧处理需要833ms左右,和放PPT一样。本来想使用tensorrt进行加速推理,但前提需要cuda,rk的板子上都是arm的手机gpu,没有nvidia的cuda,所以不能这样适配。那么转过来,使用开发板自带的NPU进行加速推理,岂不是最佳方案,因为它本身就是人工智能开发板,不用NPU相当于没有发挥它的全部能力。 🏅然后今天(2022.7.2)成功实践了转换rknn模型,并使用npu推理。为了让后面的同学少走弯路,特此花1个h记录下RKNPU2的使用教程,因为官方教程只有Android版本,所以Ubuntu系统的都是我自己摸索出来的。上一期是使用RKNN-Toolkit的教程:rk3588使用npu进行模型转换和推理,加速AI应用落地 🍍一、环境信息 PC操作系统 Ubuntu18.04(x86_64) 开发板 RK3588 开发板操作系统 Ubuntu20.04(aarch64) 本教程以 rknn_yolov5_demo 在 RK3588 Ubuntu20.04 64位 平台上运行为例,介绍如何使用RKNPU2。这里RKNPU2就是Firefly对第二代板子使用的NPU版本,我在github上看了RKNPU的文件,是给3399系列和之前的板子使用的。 🍎二、下载工具 RK3588 内置 NPU 模块, 处理性能最高可达6TOPS。使用该NPU需要下载RKNN SDK,RKNN SDK 为带有 NPU 的 RK3588S/RK3588 芯片平台提供编程接口,能够帮助用户部署使用 RKNN-Toolkit2 导出的 RKNN 模型,加速 AI 应用的落地。 我们直接cd到build目录下进行sh编译,出现下面报错: 查看手册,上面说板子为linux系统则需下载 gcc 交叉编译器,那么我们就来下载g++,输入下面命令: sudo apt-get install aarch-linux-gnu-g++ 安装好之后,输入命令查看g++版本 aarch-linux-gnu-g++ -v gcc是GCC中的GUN C Compiler(C 编译器),g++是GCC中的GUN C++ Compiler(C++编译器),其实两者都可以编译c和c++代码,就好比c++和c的关系,我们选其一使用就好。 […]