机器学习模型的构建和优化是一个复杂且耗时的过程,涉及特征工程、模型选择、超参数调优等多个环节。AutoML(Automated Machine Learning)旨在通过自动化的方式来简化这些流程,提高开发效率并提升模型表现。AutoML工具如`auto-sklearn`和`TPOT`提供了强大的自动化功能,帮助开发者快速构建和优化模型。本文详细介绍如何使用这些工具,从特征工程、模型选择到超参数调优,逐步展示AutoML的工作原理和实践方法。通过大量代码示例和详细注释,我们将展示AutoML在不同数据集上的