clickhouse就不说了,可以参考我前面的博文,这里主要介绍一下cloki和ilogtail。
ilogtail是阿里开源的一款轻量级的日志采集工具,针对k8s环境也有很好的优化,比filebeat轻,资源消耗低,采集效率也快一些。目前官方也支持多种输入、处理和输出, 其中就包含输出到loki或者clickhouse。(要注意logtail是阿里自带的一个日志采集工具,只能采集到阿里的sls,ilogtail是开源社区的,支持多种插件)
cloki也是国外开源的一个工具,类似于loki,API也和loki一模一样,但是后台可以关联到更高效的clickhouse作为存储。(目前相关文章不多,但可用)
因为所有的都是部署在k8s上的,所以直接上yaml文件吧
cloki-deployment.yml
apiVersion: apps/v1
kind: Deployment
metadata:
name: cloki
labels:
io.metrico.service: cloki
spec:
replicas: 1
selector:
matchLabels:
io.metrico.service: cloki
strategy: {}
template:
metadata:
annotations:
qryn.cmd: qryn.dev
creationTimestamp: null
labels:
io.metrico.service: cloki
spec:
containers:
- env:
- name: CLICKHOUSE_SERVER # 具体配置参考文档
value: clickhouse
- name: CLICKHOUSE_AUTH
value: 'default:xxxxxx'
- name: CLICKHOUSE_PORT
value: '8123'
- name: CLICKHOUSE_DB
value: cloki
- name: CLICKHOUSE_TSDB
value: cloki
- name: FASTIFY_METRICS
value: 'true'
- name: DEBUG
value: 'true'
- name: FASTIFY_BODYLIMIT
value: '52428800'
- name: CLUSTER_NAME #用于ck集群
value: 'my_cluster'
image: qxip/qryn:latest
name: cloki
ports:
- containerPort: 3100
resources: {}
restartPolicy: Always
status: {}
cloki-service.yml
apiVersion: v1
kind: Service
metadata:
creationTimestamp: null
labels:
io.metrico.service: cloki
name: cloki
spec:
ports:
- name: "3100"
port: 3100
targetPort: 3100
selector:
io.metrico.service: cloki
status:
loadBalancer: {}
kubectl apply -f cloki-service.yaml,cloki-deployment.yaml -n ops
ilogtail-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: ilogtail-user-cm
namespace: ops
data:
loki_stdout.yaml: |
enable: true
inputs:
- Type: service_docker_stdout
Stderr: false
Stdout: true # 只采集标准输出
IncludeK8sLabel: # 采集nginx的日志,这里可以修改为label或者其他指定,具体看文档
app: nginx
processors:
- Type: processor_default # 默认不做数据处理
SourceKey: content
flushers:
- Type: flusher_loki #输出也可以改成stdout来测试,或者直接输出到clickhouse,具体看文档
URL: http://cloki:3100/loki/api/v1/push
TenantID: ilogtail
StaticLabels:
source: ilogtail
ilogtail-daemonset.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: ilogtail-ds
namespace: ops
labels:
k8s-app: logtail-ds
spec:
selector:
matchLabels:
k8s-app: logtail-ds
template:
metadata:
labels:
k8s-app: logtail-ds
spec:
tolerations:
- operator: Exists # deploy on all nodes
containers:
- name: logtail
env:
- name: ALIYUN_LOG_ENV_TAGS # add log tags from env
value: _node_name_|_node_ip_
- name: _node_name_
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: spec.nodeName
- name: _node_ip_
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: status.hostIP
- name: cpu_usage_limit # iLogtail's self monitor cpu limit
value: "1"
- name: mem_usage_limit # iLogtail's self monitor mem limit
value: "512"
image: >-
sls-opensource-registry.cn-shanghai.cr.aliyuncs.com/ilogtail-community-edition/ilogtail:latest
imagePullPolicy: IfNotPresent
resources:
limits:
cpu: 1000m
memory: 1Gi
requests:
cpu: 400m
memory: 384Mi
volumeMounts:
- mountPath: /var/run # for container runtime socket
name: run
- mountPath: /logtail_host # for log access on the node
mountPropagation: HostToContainer
name: root
readOnly: true
- mountPath: /usr/local/ilogtail/checkpoint # for checkpoint between container restart
name: checkpoint
- mountPath: /usr/local/ilogtail/user_yaml_config.d # mount config dir
name: user-config
readOnly: true
dnsPolicy: ClusterFirstWithHostNet
hostNetwork: true
volumes:
- hostPath:
path: /var/run
type: Directory
name: run
- hostPath:
path: /
type: Directory
name: root
- hostPath:
path: /etc/ilogtail-ilogtail-ds/checkpoint
type: DirectoryOrCreate
name: checkpoint
- configMap:
defaultMode: 420
name: ilogtail-user-cm
name: user-config
部署完后ilogtail就作为daemonset开始采集nginx的日志并输出到cloki里啦,因为loki是可以直接与grafana集成的,所以只需要在grafana里把cloki作为数据源加上,就可以直接可视化查询了!