在机器学习项目中,数据预处理、特征工程、模型训练与评估是不可或缺的环节。随着项目规模的扩大和复杂度的增加,手动管理这些步骤不仅繁琐且容易出错。`scikit-learn`提供的管道(Pipeline)工具,能够将这些步骤自动化、模块化,极大地提升了机器学习流程的效率和可维护性。本文将深入探讨如何使用`scikit-learn`构建高效的机器学习管道,涵盖从数据预处理到模型评估的完整流程。通过详细的代码示例和中文注释,读者将学习如何整合各种预处理步骤、选择合适的模型、进行参数调优以及评估模型性能。此外,本文还