生成式人工智能(Generative AI),特别是大型语言模型(LLMs),在自动化和辅助代码生成任务方面展现出巨大潜力。然而,其固有的逐字符(token-by-token)生成机制,在处理大规模、复杂的代码库和文档时,若每次都需从头处理上下文,则面临效率低下的挑战。本报告旨在深入剖析这一问题,并重点探讨**预上下文生成**作为核心工程化手段,如何显著提升代码生成的效率和质量。我们将详细分析在生成过程中实时处理上下文的局限性,阐述通过预先生成和结构化必要上下文信息,并结合高效检索机制(如检索增强生成 RAG 及其高级形态),从而优化代码生成流程的解决方案。报告还将讨论上下文缓存、模型架构优化、知识蒸馏等补充技术如何与预上下文策略协同作用。此外,本报告将结合 DeepWiki、Context7 及 DeepWiki-Open 等案例,分析实际系统中预上下文生成与利用的架构考量与实现策略,最终为构建以预上下文为基础的高性能 AI 代码生成系统提出综合建议。核心观点认为,未来的发展方向在于从依赖即时上下文处理的生成模型,转向集成了智能化的上下文预生成、管理和高效检索能力的工程化、情境感知系统,从而实现显著的效率提升。