IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    “支持向量机系列”的番外篇一: Duality

    统计之都发表于 2014-03-19 13:10:08
    love 0

    原文链接请点击这里

    在之前关于support vector的推导中,我们提到了dual,这里再来补充一点相关的知识。这套理论不仅适用于 SVM 的优化问题,而是对于所有带约束的优化问题都适用的,是优化理论中的一个重要部分。简单来说,对于任意一个带约束的优化都可以写成这样的形式:

    $$ \begin{aligned} \min&f_0(x) \\ s.t. &f_i(x)\leq 0, \quad i=1,\ldots,m\\ &h_i(x)=0, \quad i=1,\ldots,p \end{aligned} $$

    形式统一能够简化推导过程中不必要的复杂性。其他的形式都可以归约到这样的标准形式,例如一个$\max f(x)$可以转化为$\min -f(x)$等。假如 $f_0,f_1,\ldots,f_m$全都是凸函数,并且$h_1,\ldots,h_p$全都是仿射函数(就是形如 $Ax+b$ 的形式),那么这个问题就叫做凸优化(Convex Optimization)问题。凸优化问题有许多优良的性质,例如它的极值是唯一的。不过,这里我们并没有假定需要处理的优化问题是一个凸优化问题。



沪ICP备19023445号-2号
友情链接