业务分析模型是优化决策与提升效率的关键工具。本文精选了四个高效业务分析模板,包括总分式结构模型,适用于单一关键指标深入分析;矩阵式结构模型,适用于双指标交叉分析;循环式结构模型,适用于流程性业务的持续优化;以及逻辑树模型,专用于问题诊断与决策支持。这些模板各有特色,广泛适用于不同业务场景,助力企业精准定位问题、高效分配资源、科学制定策略,实现业务增长与竞争力提升。
经常有同学问:“有没有业务分析模型,能直接代入数据,输出结论”。不同企业里,业务形态千奇八怪,肯定没法用一条公式满足所有需求。
但是,有一套方法很好用,可以帮助大家快速梳理清楚业务逻辑,构建分析思路。
总分式结构一般用于单一关键指标的分析。比如我们要分析一个企业的收入情况,可能该企业有线上、线下,多个销售渠道,有多个类型产品在销售。
此时需要把整体收入根据渠道、商品情况拆开(如下图),从而看清楚:
成本分析也能用类似方式,比如分析一个商品的生产成本,需要拆解:
总分式模型应用非常广泛,因为大部分业务部门就只背一个关键KPI指标,因此直接拆KPI指标,就能得到该部门的分析模型。
如果遇到一个部门同时有好几个任务,那么拆解会非常复杂,比如一个公司的客户服务部门,即得接客服电话,又得跟进售后服务,还得借售后机会推销新品,那它的业务就混合了好多种模式,需要一一梳理(如下图)。
矩阵式结构一般用于两个关键指标的分析,比如把收入成本摆在一起,对某个业务的投入产出情况进行分析,评价业务表现,发现问题点。
当然,实操的时候,收入、成本的形态会很复杂:
收入端:不同商品、不同客户、不同渠道、有没有促销叠加
成本端:变动成本、固定成本、前期投入的沉没成本
矩阵式模型的关键,在于:根据业务特点+业务目标,合理地划分收入/成本。
比如开店,如果仅评估当月经营情况,是不需要考虑沉没成本的。但考虑新开店计划,就必须考虑沉没成本的回收速度。比如促销活动评估,到底怎么核算收益,怎么估算自然增长率,哪些成本该算到活动里,需要结合活动形式具体考虑,很难用一套标准去硬套。
好消息是:很多公司的业务部门,只要埋头做自己的KPI就行,不需要考虑这些复杂问题。坏消息是:很多公司会直接把收入成本的评估丢给财务,而财务的同学不咋懂业务。于是分析做得很辛苦,做出来以后又会引发业务和财务的PK,总之没那么轻松交差。
比如商品的进销存管理,就是一个典型的循环式模型,只要商品没下架,就要持续进货→销售→盘点库存→再进货。类似的,比如用户运营,也是循环式结构,持续拉新→促活→转化→唤醒,保持用户群体的活力(如下图)。
在循环式结构中,数据指标相互影响,因此一般会选一个起点开始分析。比如商品进销存管理,可以:
整个分析如下图方式展开。
在这个过程中,对未来的预测是最重要的,也是最复杂的。因为大部分商品销量不是一条直线,受到自然周期,生命周期,营销动作,产品竞争力,目标市场偏好等综合影响。这里有可能衍生出很复杂的分析。
逻辑树模型一般用来诊断问题。之所以叫“树”,是因为在诊断问题的时候,经常需要做“是XX原因,不是XX原因”的判断,这些判断逻辑写出来形同树枝。
比如要分析:为什么A店铺销量不达标。有一位同学提出:是因为A店的位置不好。那么他提出这个假设的时候,就默认了:不是因为A店的店长不行。此时写出来分析逻辑如下图所示(如下图):
如果想进一步验证判断,就需要大量列举数据,支持结论。随着例子的增多,逻辑树也会越来越大(如下图):
逻辑树模型有两个难点,第一个是:提出合理的假设。比如一提到收入下降,很多人会习惯性地扯“大环境不好”;提到成本升高,很多人习惯性扯“通货膨胀”。这些看似有理但过于宏大的假设,会误导分析方向,掩盖真实问题。
第二个难点,在于:找到足够多的证据。很多时候,单靠历史数据不能直接推导出结论,需要结合测试进行验证。比如上文提到的“店长能力不佳”,严格的做法,需要找同类门店,调换店长做测试。现实中,很多业务部门不愿意做额外测试,总是死守一种老方法。这样会错失找到问题关键的机会。
综上:想要做出好的业务分析,梳理清楚业务逻辑,清晰分析目标,提出合理的假设是必不可少的环节。
本文由人人都是产品经理作者【接地气的陈老师】,微信公众号:【接地气的陈老师】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。
题图来自Unsplash,基于 CC0 协议。