前几天看到微博上大家讨论县城名字:http://weibo.com/1444865141/EjcmoaykB
一时好奇,就把官方数据拿来看了一下。(2016年9月中华人民共和国县以上行政区划代码)
全部用来命名的只有1228个字,而相较于新华字典一般收录的八千到1万字,覆盖面其实挺小的。
不出意外的,这个字频分布呈现快速下降的长尾分布。看一下这个数据,还是蛮有意思的。
这里贴一下前50高频词。
完整的字频统计在这里: 中国县级及以上行政单位字频统计.csv
然后我们分区域来看一下各个区域特征。因为港澳台地区没有太多数据,所以我们只分析六大区域:华北、东北、华东、华中/华南、西南、西北。
全部数据下载:
原始数据:
分析脚本:
town_name <- read_csv("~/Documents/town_name.csv") names(town_name) = c("code","name") town_name$name_s = gsub("市$|区$|县$|旗$|自治.*?$|盟$|省$","",town_name$name) unique_character = unlist(strsplit(town_name$name_s,split = "")) character_freq = as.data.frame(table(unique_character)) library(dplyr) character_freq = character_freq %>% arrange(Freq) %>% mutate(rank = 1:nrow(character_freq)) write.csv(character_freq, file = "character_freq.csv", row.names = F) library(ggplot2) top_50 = character_freq %>% filter(Freq >= 25) ggplot(top_50, aes(x = as.factor(rank), y = Freq)) + geom_bar(stat="identity", alpha = 0.5, fill = "grey")+ coord_flip()+ theme_bw(base_family = "Hei") + scale_x_discrete(labels = top_50$unique_character) + xlab("") + geom_text(aes(label = Freq, y =Freq/2 ), color = "deepskyblue3") + ylab("频次")+ggtitle("中国县级及以上行政单位字频统计") #五行 character_freq %>% filter(unique_character %in% c("金","木","水","火","土")) #省 town_name$province = substr(town_name$code, 1,2) town_name$region = substr(town_name$code, 1,1) unique_prov = town_name %>% filter(grepl("0000",town_name$code)) char_by_prov = lapply(unique_prov$province, function(x) { prov = subset(town_name,province==x) chars = unlist(strsplit(prov$name_s,split = "")) freq_prov = as.data.frame(table(chars)) freq_prov$rank = rank(-freq_prov$Freq, ties.method = "first") freq_prov$prov = x return(freq_prov) }) char_by_prov = do.call(rbind, char_by_prov) names(char_by_prov) ggplot(char_by_prov %>% filter(rank<=5 & chars != "族" & ! prov %in% c(82,81)), aes(x= rank, y = Freq)) + geom_bar(stat="identity", alpha = 0.3)+ facet_grid(name~.)+ theme_bw(base_family = "Hei") + geom_text(aes(label = chars, y = Freq/2),family = "Hei")+ coord_flip()+ xlab("") + ylab("字频") write.csv(char_by_prov, file = "char_by_prov.csv", row.names=F) #by region char_by_region = lapply(1:6, function(x) { prov = subset(town_name,region==x) chars = unlist(strsplit(prov$name_s,split = "")) freq_prov = as.data.frame(table(chars)) freq_prov$rank = rank(-freq_prov$Freq, ties.method = "last") freq_prov$region = x return(freq_prov) }) char_by_region = do.call(rbind, char_by_region) char_by_region$region = factor(char_by_region$region) levels(char_by_region$region) = c("华北","东北","华东","华中/华南","西南","西北") ggplot(char_by_region %>% filter(rank<=10 ), aes(x= rank, y = Freq)) + geom_bar(stat="identity", alpha = 0.3)+ facet_grid(region~.)+ theme_bw(base_family = "Hei") + geom_text(aes(label = chars, y = Freq/2),family = "Hei")+ coord_flip()+ xlab("") + ylab("字频") + ggtitle("中国县级以上行政单位字频统计(按区域划分)") write.csv(char_by_region %>% filter(rank<=10 ), file = "freq_by_region.csv",row.names = F) write.csv(char_by_region, file = "char_by_region.csv", row.names = F) # draw regional map library(ggmap) # find each regional center unique_region = filter(unique_prov, substr(province,2,2)==2 & region<=6) location = lapply(unique_region$name,geocode) location = do.call(rbind,location) unique_region = cbind(unique_region,location) unique_region$region = factor(unique_region$region) levels(unique_region$region) = c("华北","东北","华东","华中/华南","西南","西北") # top 10 char for each region top_10_region = char_by_region %>% filter(rank<=10 ) top_10_region = top_10_region %>% mutate(labels = paste0(chars," (",Freq,"次)")) top_10_region = merge(top_10_region,unique_region, by ="region") #adjust label positions top_10_region_g = top_10_region %>% mutate(lon_a = lon - rank %%2 *5 -3, lat_a = lat - rank/2 - rank %%2 *(1/2)+5/2) %>% select(c(region, rank, lon_a, lat_a, labels)) %>% arrange(region,rank) #manual adjustment top_10_region_g = top_10_region_g %>% mutate( lon_a = lon_a + (region == "华东")*(7) + (region == "西南")*(-3) ) qmap('China',color="color", zoom = 4, maptype = "satellite", alpha = 0.8) + geom_text(data = top_10_region_g, aes( x = lon_a, y = lat_a, label = labels), family = "Hei",color = "white") + geom_text(data = unique_region,aes( x = lon-6+ (region == "华东")*(7)+ (region == "西南")*(-3), y = lat+3, label = paste0(region,"地区:")), family = "Hei",color = "white")