The ongoing debate recently in Turkey is that the Turkish government has suppressed US Dollar/Turkish Lira exchange rates (USD/TRY) to prevent economic turmoil. Many authorities in the business, especially exporters, think that the USD/TRY parity should be in the range of 24-25 Turkish Lira.
To look through that, we will predict for the whole year and see whether the rates are in rational intervals. But first, we will model our data with bagged multivariate adaptive regression splines (MARS) via the earth package. The predictors of our regression model are the current account (account) and the producer price index (ppi) of Turkey.
library(tidyverse) library(tidymodels) library(lubridate) library(timetk) library(tsibble) library(modeltime) library(baguette) library(fable) library(plotly) library(ggtext) library(systemfonts) library(showtext) df <- read_csv("https://raw.githubusercontent.com/mesdi/blog/main/usdtry_mars.csv") #Turkiye Current Account (USD) df_ca <- df %>% filter(type == "ca") %>% mutate(date = #removing parentheses and text within case_when(str_detect(date," \\(.*\\)") ~ str_remove(date," \\(.*\\)"), TRUE ~ date)) %>% mutate( date = parse_date(date, format = "%b %d, %Y") %>% #subtracting 2 months from release date floor_date("month") %m-% months(2), value = str_remove(value, "B") %>% as.numeric() ) %>% select(date, account = value) #Turkiye Producer Price Index (TRY) df_ppi <- df %>% filter(type == "ppi") %>% mutate(date = #removing parentheses and text within case_when(str_detect(date," \\(.*\\)") ~ str_remove(date," \\(.*\\)"), TRUE ~ date)) %>% mutate( date = parse_date(date, format = "%b %d, %Y") %>% #subtracting 1 months from release date floor_date("month") %m-% months(1), value = str_remove(value, "B") %>% as.numeric() ) %>% select(date, ppi = value) #USD/TRY - US Dollar Turkish Lira df_usdtry <- df %>% filter(type == "usdtry") %>% mutate( date = parse_date(date, format = "%m/%d/%Y"), value = as.numeric(value) ) %>% select(date, usdtry = value) #Merging all the datasets df_tidy <- df_usdtry %>% left_join(df_ppi, by = "date") %>% left_join(df_ca, by = "date") %>% na.omit()
Now that we have created our dataset, we can start modeling. Because the variables are in different scales, we normalize all of them. And we have to convert the categorical variables to numeric ones due to package/engine necessity.
#Splitting the data for train and test data splits <- df_tidy %>% time_series_split(assess = "1 year", cumulative = TRUE, date_var = date) df_train <- training(splits) df_test <- testing(splits) #Add time series signature df_rec_ts <- recipe(usdtry ~ ., data = df_train) %>% step_timeseries_signature(date) #Preprocessing df_rec_tidy <- df_rec_ts %>% step_rm(date) %>% step_rm(contains("iso"), contains("minute"), contains("hour"), contains("am.pm"), contains("xts")) %>% step_zv(all_numeric_predictors()) %>% step_normalize(all_numeric_predictors()) %>% step_dummy(contains("lbl"), one_hot = TRUE)
We do hyperparameter tuning in order to find the optimal model for the data. As seen below, the degree of interaction is 2, which means there is an interaction term, and it exercises the backward pruning method.
#Processed data for determining the number of model terms df_proc <- df_rec_tidy %>% prep() %>% bake(new_data = NULL) #Model specification mars_spec <- bag_mars(num_terms = min(200, max(20, 2 * ncol(df_proc))) + 1, prod_degree = tune(),#marks for tuning prune_method = tune()) %>% set_engine("earth") %>% set_mode("regression") #Workflow mars_wflow <- workflow() %>% add_model(mars_spec) %>% add_recipe(df_rec_tidy) #cross-validation for resamples set.seed(12345) df_folds <- vfold_cv(df_train) #Building the hyperparameter data frame for tuning hyper_grid <- crossing( prod_degree = 1:2, prune_method = c("backward", "forward") ) #Hyperparameter Tuning mars_reg_tune <- mars_wflow %>% tune_grid( df_folds, grid = hyper_grid, metrics = metric_set(rsq) ) #Selecting the best parameters according to the r-square mars_param_best <- select_best(mars_reg_tune, metric = "rsq") %>% select(-.config) mars_param_best # A tibble: 1 x 2 # prod_degree prune_method # <int> <chr> #1 2 backward
We can build our model with the best parameters we found earlier tuning process.
#Final workflow with the object of best parameters final_df_wflow <- workflow() %>% add_model(mars_spec) %>% add_recipe(df_rec_tidy) %>% finalize_workflow(mars_param_best) #Model table set.seed(2023) model_table <- modeltime_table( final_df_wflow %>% fit(df_train) ) #Calibration calibration_table <- model_table %>% modeltime_calibrate(df_test) #Accuracy calibration_table %>% modeltime_accuracy() %>% select(rmse, rsq) # A tibble: 1 x 2 # rmse rsq # <dbl> <dbl> #1 2.55 0.543
When we look at the accuracy results coefficient of determination (rsq
) looks low because the accuracy measures are calculated based on test data in the calibration phase, and our test data’s time range is small. But the RMSE looks fine, considering the target variable.
Before we start the modeling, we create our future data set to use in the regression model as a predictor. We will use the automated ARIMA function to do that. When we analyze the ARIMA
models for ppi
and account
variables, we could see that they have an annual seasonality.
#Future dataset for the next 12 months date <- df_tidy %>% mutate(date = yearmonth(date)) %>% as_tsibble() %>% new_data(12) %>% as_tibble() %>% mutate(date = as.Date(date)) ppi <- df_tidy %>% mutate(date = yearmonth(date)) %>% as_tsibble() %>% model(ARIMA(ppi)) %>% forecast(h = 12) %>% as_tibble() %>% select(ppi = .mean) account <- df_tidy %>% mutate(date = yearmonth(date)) %>% as_tsibble() %>% model(ARIMA(account)) %>% forecast(h = 12) %>% as_tibble() %>% select(account = .mean) df_future <- date %>% bind_cols(ppi) %>% bind_cols(account)
Finally, we can plot the actual values from 2016 to 2023 and predictions for the next 12 months.
#Forecasting plot dataset set.seed(1983) df_plot <- calibration_table %>% modeltime_refit(df_tidy) %>% modeltime_forecast( new_data = df_future, actual_data = df_tidy %>% filter(year(date) > 2015) ) #The observation dataset df_actual <- df_plot %>% filter(.key == 'actual') #The prediction dataset df_pred <- df_plot %>% filter(.key == 'prediction') #importing google fonts font_add_google("Nunito", "nuni" ) showtext_auto() #Hoverinfo texts text_actual <- glue::glue("{round(df_actual$.value, 2)} TRY\n{df_actual$.index}") text_pred <- glue::glue("{round(df_pred$.value, 2)} TRY\n{df_pred$.index}") df_plot %>% ggplot(aes(.index, .value)) + geom_area( data = . %>% filter(.key == "actual"), fill="#69b3a2", alpha=0.5 ) + geom_line( data = . %>% filter(.key == "actual"), color ="#69b3a2" ) + geom_point(aes(text = text_actual), data = . %>% filter(.key == "actual"), color ="#69b3a2" ) + geom_area( data = . %>% filter(.key == "prediction"), fill="#cf2765", alpha=0.5 ) + geom_line( data = . %>% filter(.key == "prediction"), color = "#cf2765" ) + geom_point(aes(text = text_pred), data = . %>% filter(.key == "prediction"), color = "#cf2765" ) + scale_y_continuous(limits = c(0,30))+ labs( x = "", y = "", title = "The USD/TRY <span style = 'color:#69b3a2'>rates from 2016 to 2023</span>\nand <span style = 'color:#cf2765'>the predictions for the next 12 months</span>" ) + theme_minimal()+ theme( plot.title = element_markdown( hjust = 0.5, face = "bold" ), plot.background = element_rect(fill = "#f3f6f4", color = NA), panel.background = element_rect(fill = "#f3f6f4", color = NA) ) -> p #setting font family for ggplotly font <- list( family= "Nunito", size=20 ) #setting font family for hover label label <- list( font = list( family = "Nunito", size = 16 ) ) #converts ggplot2 object to plotly for interactive chart ggplotly(p, tooltip = "text") %>% style(hoverlabel = label) %>% layout(font = font) %>% #Remove plotly buttons from the mode bar config(displayModeBar = FALSE)
When we hover over the points, we can see that the April data is quite similar to the expectations of the Turkish exporters and, the majority of economists. So, in the near future, the parity might explode, especially after the election is to be held on May 14.