IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    Automated random variable distribution inference using Kullback-Leibler divergence and simulating best-fitting distribution

    T. Moudiki发表于 2024-10-02 00:00:00
    love 0
    [This article was first published on T. Moudiki's Webpage - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
    Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

    Another post from R package misc! This time, we’ll see how to fit multiple continuous parametric distributions on a vector of data and simulate best-fitting distribution. Under the hood, misc::fit_param_dist uses a loop of MASS::fitdistr calls and Kullback-Leibler divergence for checking distribution adequacy.

    remotes::install_github("thierrymoudiki/misc")
    

    Example usage 1

    set.seed(123)
    n <- 1000
    vector <- rweibull(n, 2, 3)  # Replace with your vector
    
    start <- proc.time()[3]
    simulate_function <- misc::fit_param_dist(vector)
    end <- proc.time()[3]
    print(paste("Time taken:", end - start))
    
    simulated_data <- simulate_function(n)  # Generate 100 samples from the best-fit distribution
    
    par(mfrow = c(1, 2))
    hist(vector, main = "Original Data", xlab = "Value", ylab = "Frequency")
    hist(simulated_data, main = "Simulated Data", xlab = "Value", ylab = "Frequency")
    

    xxx

    Example usage 2

    set.seed(123)
    n <- 1000
    vector <- rnorm(n)  # Replace with your vector
    
    start <- proc.time()[3]
    simulate_function <- misc::fit_param_dist(vector)
    end <- proc.time()[3]
    print(paste("Time taken:", end - start))
    
    simulated_data <- simulate_function(n)  # Generate 1000 samples from the best-fit distribution
    
    par(mfrow = c(1, 2))
    hist(vector, main = "Original Data", xlab = "Value", ylab = "Frequency")
    hist(simulated_data, main = "Simulated Data", xlab = "Value", ylab = "Frequency")
    

    xxx

    Example usage 3

    # Example usage 1
    set.seed(123)
    n <- 1000
    vector <- rlnorm(n)  # Replace with your vector
    
    start <- proc.time()[3]
    simulate_function <- misc::fit_param_dist(vector)
    end <- proc.time()[3]
    print(paste("Time taken:", end - start))
    
    simulated_data <- simulate_function(n)  # Generate 1000 samples from the best-fit distribution
    
    par(mfrow = c(1, 2))
    hist(vector, main = "Original Data", xlab = "Value", ylab = "Frequency")
    hist(simulated_data, main = "Simulated Data", xlab = "Value", ylab = "Frequency")
    

    xxx

    Example usage 4

    set.seed(123)
    n <- 1000
    vector <- rbeta(n, 2, 3)  # Replace with your vector
    
    start <- proc.time()[3]
    simulate_function <- misc::fit_param_dist(vector, verbose=TRUE)
    end <- proc.time()[3]
    print(paste("Time taken:", end - start))
    
    simulated_data <- simulate_function(n)  # Generate 1000 samples from the best-fit distribution
    
    par(mfrow = c(1, 2))
    hist(vector, main = "Original Data", xlab = "Value", ylab = "Frequency")
    hist(simulated_data, main = "Simulated Data", xlab = "Value", ylab = "Frequency")
    

    xxx

    Bonus: You can develop a package at the command line, by putting this file in the root directory of your package, and typing make or make help at the command line. Here’s the Makefile:

    To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - R.

    R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
    Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
    Continue reading: Automated random variable distribution inference using Kullback-Leibler divergence and simulating best-fitting distribution


沪ICP备19023445号-2号
友情链接