A few weeks ago, I introduced a model-agnostic gradient boosting (XGBoost, LightGBM, CatBoost-like) procedure for supervised regression and classification, that can use any base learner (available in R and Python package mlsauce
). You can find the previous posts here:
LightGBM is widely used in the context of time series forecasting (see e.g for M5 forecasting competition and VN1 competition), and is based on decision trees. However, it’s possible to use many other base learners, such as ridge regression, kernel ridge regression, etc. In this post, I will show how to use mlsauce
version 0.24.0 for time series forecasting, with any base learner.
Here, Generic Gradient Boosting is compared to popular models such as VAR and VECM (without hyperparameter tuning), on the macrodata dataset from the statsmodels
package. The dataset is split into a training set (90% of the data) and a testing set (10% of the data), and model performance is evaluated using Root Mean Squared Error (RMSE) and Winkler score (uncertainty quantification). Uncertainty quantification uses conformal prediction and numerical simulation, as described in my paper and more details can be found in these slides.
import mlsauce as ms import numpy as np import pandas as pd import statsmodels.api as sm try: from statsmodels.tsa.base.datetools import dates_from_str except ImportError: ModuleNotFoundError # some example data mdata = sm.datasets.macrodata.load_pandas().data # prepare the dates index dates = mdata[['year', 'quarter']].astype(int).astype(str) quarterly = dates["year"] + "Q" + dates["quarter"] quarterly = dates_from_str(quarterly) mdata = mdata[['realgovt', 'tbilrate', 'cpi']] mdata.index = pd.DatetimeIndex(quarterly) data = np.log(mdata).diff().dropna() n = data.shape[0] max_idx_train = np.floor(n*0.9) training_index = np.arange(0, max_idx_train) testing_index = np.arange(max_idx_train, n) df_train = data.iloc[training_index,:] df_test = data.iloc[testing_index,:] regr_mts = ms.LazyBoostingMTS(verbose=0, ignore_warnings=True, lags = 20, n_hidden_features=7, n_clusters=2, type_pi="scp2-block-bootstrap", #kernel="gaussian", replications=250, show_progress=False, preprocess=False, sort_by="WINKLERSCORE",) models = regr_mts.fit(df_train, df_test) print(models[["RMSE", "WINKLERSCORE", "Time Taken"]].iloc[0:25,:]) 0%| | 0/30 [00:00<?, ?it/s]100%|██████████| 30/30 [00:13<00:00, 2.20it/s] RMSE WINKLERSCORE \ Model MTS(GenericBooster(RidgeCV)) 0.32 1.71 MTS(GenericBooster(PassiveAggressiveRegressor)) 0.34 1.78 MTS(GenericBooster(SGDRegressor)) 0.32 1.87 MTS(GenericBooster(Ridge)) 0.35 1.93 MTS(GenericBooster(HuberRegressor)) 0.37 1.95 MTS(GenericBooster(ElasticNet)) 0.33 1.96 MTS(GenericBooster(Lasso)) 0.33 1.96 MTS(GenericBooster(DummyRegressor)) 0.33 1.96 MTS(GenericBooster(LassoLars)) 0.33 1.96 MTS(GenericBooster(DecisionTreeRegressor)) 0.33 1.97 MTS(GenericBooster(QuantileRegressor)) 0.33 1.98 MTS(GenericBooster(LassoLarsIC)) 0.33 1.99 MTS(GenericBooster(TweedieRegressor)) 0.33 2.01 MTS(GenericBooster(BayesianRidge)) 0.33 2.01 MTS(GenericBooster(LassoCV)) 0.33 2.02 MTS(GenericBooster(LassoLarsCV)) 0.33 2.02 MTS(GenericBooster(LarsCV)) 0.33 2.02 MTS(GenericBooster(ElasticNetCV)) 0.33 2.02 MTS(GenericBooster(KNeighborsRegressor)) 0.33 2.03 MTS(GenericBooster(SVR)) 0.34 2.07 MTS(GenericBooster(ExtraTreeRegressor)) 0.33 2.19 VAR 0.33 2.21 VECM 0.34 2.39 MTS(GenericBooster(LinearSVR)) 0.45 3.03 MTS(GenericBooster(TransformedTargetRegressor)) 0.49 3.04 Time Taken Model MTS(GenericBooster(RidgeCV)) 0.13 MTS(GenericBooster(PassiveAggressiveRegressor)) 0.29 MTS(GenericBooster(SGDRegressor)) 0.09 MTS(GenericBooster(Ridge)) 0.09 MTS(GenericBooster(HuberRegressor)) 0.18 MTS(GenericBooster(ElasticNet)) 0.09 MTS(GenericBooster(Lasso)) 0.09 MTS(GenericBooster(DummyRegressor)) 0.08 MTS(GenericBooster(LassoLars)) 0.09 MTS(GenericBooster(DecisionTreeRegressor)) 0.11 MTS(GenericBooster(QuantileRegressor)) 0.15 MTS(GenericBooster(LassoLarsIC)) 0.30 MTS(GenericBooster(TweedieRegressor)) 0.09 MTS(GenericBooster(BayesianRidge)) 0.14 MTS(GenericBooster(LassoCV)) 5.01 MTS(GenericBooster(LassoLarsCV)) 0.54 MTS(GenericBooster(LarsCV)) 0.46 MTS(GenericBooster(ElasticNetCV)) 4.74 MTS(GenericBooster(KNeighborsRegressor)) 0.10 MTS(GenericBooster(SVR)) 0.09 MTS(GenericBooster(ExtraTreeRegressor)) 0.10 VAR 0.01 VECM 0.01 MTS(GenericBooster(LinearSVR)) 0.16 MTS(GenericBooster(TransformedTargetRegressor)) 0.13
Here, I will show how to use mlsauce
for time series forecasting, with Ridge regression and Kernel Ridge regression as base learners. 250 conformal predictive simulations are performed, and the prediction is made for the next 20 periods.
import nnetsauce as ns regr_ridge = ms.GenericBoostingRegressor(ms.RidgeRegressor(reg_lambda=1e3)) regr_krr = ms.GenericBoostingRegressor(ms.KRLSRegressor()) regr_mts = ns.MTS(regr_ridge, lags=20, replications=250, type_pi="scp2-block-bootstrap") regr_mts.fit(df_train) regr_mts.predict(h=20) regr_mts.plot('tbilrate') 100%|██████████| 46/46 [00:00<00:00, 1612.53it/s] 100%|██████████| 46/46 [00:00<00:00, 1678.79it/s] 100%|██████████| 46/46 [00:00<00:00, 1663.07it/s] 100%|██████████| 46/46 [00:00<00:00, 1298.61it/s] 100%|██████████| 46/46 [00:00<00:00, 1410.21it/s] 100%|██████████| 46/46 [00:00<00:00, 1676.63it/s] 100%|██████████| 3/3 [00:00<00:00, 13.82it/s]
regr_mts = ns.MTS(regr_krr, lags=20, replications=250, type_pi="scp2-block-bootstrap") regr_mts.fit(df_train) regr_mts.predict(h=20) regr_mts.plot('tbilrate') 100%|██████████| 34/34 [00:01<00:00, 19.22it/s] 100%|██████████| 34/34 [00:01<00:00, 18.17it/s] 100%|██████████| 34/34 [00:01<00:00, 19.39it/s] 100%|██████████| 34/34 [00:01<00:00, 19.90it/s] 100%|██████████| 34/34 [00:01<00:00, 19.76it/s] 100%|██████████| 34/34 [00:01<00:00, 17.15it/s] 100%|██████████| 3/3 [00:14<00:00, 4.76s/it]