IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    GLMNet in Python: Generalized Linear Models

    T. Moudiki发表于 2024-11-18 00:00:00
    love 0
    [This article was first published on T. Moudiki's Webpage - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
    Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

    During the past few weeks, I’ve been adapting a Python version of the (seemingly abandoned?) official Stanford GLMNet package. Don’t try to build a programming interface on it yet, as it’s still “moving”.

    GLMNet implements the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, poisson regression and the cox model. My implementation is faithful to the R Fortran-based one, but:

    • uses numpy instead of scipy
    • uses scikit-learn style, with a main class GLMNet having methods fit and predict

    If (like me) you’re a fond a GLMNet and scikit-learn style, you may love this package. Here, I illustrate usage of this “new” package with Techtonique ecosystem, with nnetsauce and mlsauce.

    !pip install git+https://github.com/Techtonique/mlsauce.git --verbose --upgrade --no-cache-dir
    !pip install git+https://github.com/thierrymoudiki/glmnetforpython.git --verbose --upgrade --no-cache-dir
    

    1 – GLMNet

    1 – 1 GLMNet Classification

    import nnetsauce as ns
    import mlsauce as ms
    import numpy as np
    import glmnetforpython as glmnet
    from sklearn.datasets import load_breast_cancer, load_iris, load_wine
    from sklearn.model_selection import train_test_split
    from time import time
    
    
    datasets = [load_iris, load_breast_cancer, load_wine]
    
    for dataset in datasets:
    
        print(f"\n\n dataset: {dataset.__name__} -------------------")
    
        X, y = dataset(return_X_y=True)
    
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
    
        clf = glmnet.GLMNet(family="multinomial")
    
        print(clf.get_params())
    
        start = time()
        clf.fit(X_train, y_train)
        print(f"elapsed: {time() - start}")
    
        #clf.print()
        #print(clf.score(X_test, y_test))
        preds = clf.predict(X_test, ptype="class")
        print(preds)
    
        print("accuracy: ", np.mean(preds == y_test))
    
         dataset: load_iris -------------------
        {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
        elapsed: 0.5259675979614258
        [1. 2. 2. 1. 0. 2. 1. 0. 0. 1. 2. 0. 1. 2. 2. 2. 0. 0. 1. 0. 0. 1. 0. 2.
         0. 0. 0. 2. 2. 0.]
        accuracy:  0.9666666666666667
        
        
         dataset: load_breast_cancer -------------------
        {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
        elapsed: 1.3695988655090332
        [1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1.
         1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 0. 0.
         1. 0. 0. 0. 1. 1. 1. 0. 1. 0. 0. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
         1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1.
         1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
        accuracy:  0.956140350877193
        
        
         dataset: load_wine -------------------
        {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
        elapsed: 0.1249077320098877
        [2. 1. 2. 1. 1. 2. 0. 2. 2. 1. 2. 2. 2. 0. 0. 2. 1. 1. 0. 1. 1. 2. 2. 2.
         1. 2. 2. 1. 0. 0. 0. 0. 2. 1. 2. 1.]
        accuracy:  0.9722222222222222
    

    1 – 2 GLMNet Regression

    import numpy as np
    import os
    import sys
    import glmnetforpython as glmnet
    from sklearn.datasets import load_diabetes, fetch_california_housing
    from sklearn.model_selection import train_test_split
    from time import time
    
    
    datasets = [load_diabetes, fetch_california_housing]
    
    for dataset in datasets:
    
        print(f"\n\n dataset: {dataset.__name__} -------------------")
    
        X, y = dataset(return_X_y=True)
    
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    
        regr = glmnet.GLMNet()
    
        print(regr.get_params())
    
        start = time()
        regr.fit(X_train, y_train)
        print(f"elapsed: {time() - start}")
    
        regr.print()
    
        print(regr.predict(X_test, s=0.1))
    
        print(regr.predict(X_test, s=np.asarray([0.1, 0.5])))
    
        print(regr.predict(X_test, s=0.5))
    
        start = time()
        res_cvglmnet = regr.cvglmnet(X_train, y_train)
        print(f"elapsed: {time() - start}")
    
        print("\n best lambda: ", res_cvglmnet.lambda_min)
        print("\n best lambda std. dev: ", res_cvglmnet.lambda_1se)
        print("\n best coef: ", res_cvglmnet.best_coef)
        print("\n best GLMNet: ", res_cvglmnet.cvfit)
    
    
         dataset: load_diabetes -------------------
        {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'gaussian', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
        elapsed: 0.003544330596923828
        	 df 	 %dev 	 lambdau
        
        0 	 0.000000 	 0.000000 	 44.034491
        1 	 1.000000 	 0.056410 	 40.122588
        2 	 2.000000 	 0.118800 	 36.558208
        3 	 2.000000 	 0.173050 	 33.310478
        4 	 2.000000 	 0.218089 	 30.351267
        5 	 2.000000 	 0.255485 	 27.654944
        6 	 2.000000 	 0.286528 	 25.198155
        7 	 2.000000 	 0.312300 	 22.959620
        8 	 2.000000 	 0.333697 	 20.919951
        9 	 3.000000 	 0.354121 	 19.061480
        10 	 4.000000 	 0.373003 	 17.368111
        11 	 4.000000 	 0.390322 	 15.825176
        12 	 4.000000 	 0.404704 	 14.419311
        13 	 4.000000 	 0.416644 	 13.138339
        14 	 4.000000 	 0.426556 	 11.971165
        15 	 4.000000 	 0.434786 	 10.907680
        16 	 4.000000 	 0.441619 	 9.938671
        17 	 5.000000 	 0.447381 	 9.055747
        18 	 5.000000 	 0.452319 	 8.251260
        19 	 5.000000 	 0.456422 	 7.518240
        20 	 5.000000 	 0.459828 	 6.850341
        21 	 5.000000 	 0.462655 	 6.241775
        22 	 5.000000 	 0.465003 	 5.687273
        23 	 6.000000 	 0.468916 	 5.182032
        24 	 6.000000 	 0.472756 	 4.721674
        25 	 6.000000 	 0.475938 	 4.302214
        26 	 6.000000 	 0.478579 	 3.920017
        27 	 6.000000 	 0.480772 	 3.571773
        28 	 7.000000 	 0.482661 	 3.254467
        29 	 7.000000 	 0.485063 	 2.965349
        30 	 7.000000 	 0.487080 	 2.701916
        31 	 7.000000 	 0.488751 	 2.461885
        32 	 7.000000 	 0.490137 	 2.243178
        33 	 7.000000 	 0.491289 	 2.043900
        34 	 7.000000 	 0.492244 	 1.862326
        35 	 7.000000 	 0.493038 	 1.696882
        36 	 7.000000 	 0.493697 	 1.546135
        37 	 8.000000 	 0.494444 	 1.408781
        38 	 8.000000 	 0.495256 	 1.283629
        39 	 8.000000 	 0.495927 	 1.169595
        40 	 8.000000 	 0.496489 	 1.065691
        41 	 8.000000 	 0.496952 	 0.971018
        42 	 8.000000 	 0.497335 	 0.884756
        43 	 8.000000 	 0.497659 	 0.806156
        44 	 8.000000 	 0.497924 	 0.734540
        45 	 8.000000 	 0.498143 	 0.669285
        46 	 8.000000 	 0.498329 	 0.609828
        47 	 8.000000 	 0.498481 	 0.555652
        48 	 8.000000 	 0.498610 	 0.506290
        49 	 8.000000 	 0.498715 	 0.461312
        50 	 8.000000 	 0.498805 	 0.420331
        51 	 8.000000 	 0.498877 	 0.382990
        52 	 8.000000 	 0.498939 	 0.348966
        53 	 8.000000 	 0.498989 	 0.317965
        54 	 8.000000 	 0.499032 	 0.289718
        55 	 9.000000 	 0.499069 	 0.263980
        56 	 9.000000 	 0.499392 	 0.240529
        57 	 9.000000 	 0.499741 	 0.219161
        58 	 9.000000 	 0.500032 	 0.199691
        59 	 9.000000 	 0.500272 	 0.181951
        60 	 9.000000 	 0.500476 	 0.165787
        61 	 9.000000 	 0.500646 	 0.151059
        62 	 9.000000 	 0.500787 	 0.137639
        63 	 8.000000 	 0.500861 	 0.125412
        64 	 9.000000 	 0.500891 	 0.114271
        65 	 9.000000 	 0.500921 	 0.104119
        66 	 9.000000 	 0.500946 	 0.094869
        67 	 9.000000 	 0.500966 	 0.086441
        68 	 10.000000 	 0.500985 	 0.078762
        69 	 10.000000 	 0.501074 	 0.071765
        70 	 10.000000 	 0.501148 	 0.065390
        71 	 10.000000 	 0.501208 	 0.059581
        72 	 10.000000 	 0.501261 	 0.054288
        73 	 10.000000 	 0.501303 	 0.049465
        74 	 10.000000 	 0.501340 	 0.045071
        75 	 10.000000 	 0.501371 	 0.041067
        76 	 10.000000 	 0.501396 	 0.037418
        77 	 10.000000 	 0.501418 	 0.034094
        78 	 10.000000 	 0.501436 	 0.031065
        79 	 10.000000 	 0.501452 	 0.028306
        80 	 10.000000 	 0.501466 	 0.025791
        81 	 10.000000 	 0.501477 	 0.023500
        82 	 10.000000 	 0.501486 	 0.021412
        83 	 10.000000 	 0.501495 	 0.019510
        84 	 10.000000 	 0.501501 	 0.017777
        85 	 10.000000 	 0.501507 	 0.016198
        86 	 10.000000 	 0.501512 	 0.014759
        87 	 10.000000 	 0.501517 	 0.013447
        [161.26225363 153.40808479 226.88078039 163.480388   158.15906743
         138.70495293 252.60833458 107.20179977 107.04120812 111.4621737
         123.02831339 182.46487521 161.8259466  202.19109973 222.70276584
         172.29337663 108.23998068 144.9482381  176.11555866 191.67293859
         163.44023323 231.8947646  140.21508949  75.13660039 129.39763652
         188.26182192 100.80880331 101.63988186 157.52887579 185.93073996
          85.10969035 238.43828572 208.13649047 209.71355938 198.52425274
          95.48735993  93.58588193  98.38410955 225.11428814 101.19808037
         193.69596077  81.44887372 102.8093431  146.00065311 110.88937281
         215.06701174  79.87947637  77.58243533 101.06682798 217.30259906
          70.16241913 116.23582088 177.21944649 195.88268542 138.92178841
         198.65554716 219.68568399 169.97366232 192.47857773 189.04428441
         138.71921407 121.43624221 233.40434688 202.68154217 190.88486154
          42.03060013  62.01800127 159.28979811 126.65978845  86.64871155
         136.58228326  76.93411617 141.41235614 199.19748035 120.79645249
         173.18692022 146.96993898 139.31000819  99.86313284  83.63232759
          61.45995805 159.5304213  120.28229729 225.93625573 286.05353932
         165.66169186 197.95421215  70.40035793 139.89076625]
        [[161.26225363 160.79263694]
         [153.40808479 150.6281287 ]
         [226.88078039 225.5710481 ]
         [163.480388   161.80700641]
         [158.15906743 157.71369432]
         [138.70495293 144.58961694]
         [252.60833458 250.39569639]
         [107.20179977 110.67344587]
         [107.04120812 111.21584102]
         [111.4621737  107.93161795]
         [123.02831339 122.34617434]
         [182.46487521 180.55849115]
         [161.8259466  161.4535835 ]
         [202.19109973 200.49417412]
         [222.70276584 229.60354304]
         [172.29337663 170.57681745]
         [108.23998068 109.09703513]
         [144.9482381  143.71605666]
         [176.11555866 177.00946867]
         [191.67293859 194.23710327]
         [163.44023323 161.7697504 ]
         [231.8947646  229.71549579]
         [140.21508949 140.591871  ]
         [ 75.13660039  78.02802694]
         [129.39763652 129.5053364 ]
         [188.26182192 186.58248135]
         [100.80880331 102.6960668 ]
         [101.63988186 104.20365368]
         [157.52887579 156.12372213]
         [185.93073996 187.20901614]
         [ 85.10969035  89.82145958]
         [238.43828572 237.95082988]
         [208.13649047 207.73770948]
         [209.71355938 209.32169425]
         [198.52425274 197.67298512]
         [ 95.48735993  96.07154965]
         [ 93.58588193  95.09805607]
         [ 98.38410955  97.25266832]
         [225.11428814 220.52646948]
         [101.19808037 101.27641956]
         [193.69596077 194.77086843]
         [ 81.44887372  81.25151312]
         [102.8093431  102.64887002]
         [146.00065311 144.94838244]
         [110.88937281 110.25258101]
         [215.06701174 213.51721996]
         [ 79.87947637  79.10616278]
         [ 77.58243533  81.51256193]
         [101.06682798 103.20741885]
         [217.30259906 216.7643487 ]
         [ 70.16241913  72.0598882 ]
         [116.23582088 119.05445336]
         [177.21944649 178.45613256]
         [195.88268542 197.31526195]
         [138.92178841 137.70888526]
         [198.65554716 200.13140539]
         [219.68568399 218.50018565]
         [169.97366232 169.49700466]
         [192.47857773 188.32727388]
         [189.04428441 186.73052546]
         [138.71921407 140.07357784]
         [121.43624221 121.14922477]
         [233.40434688 231.63901622]
         [202.68154217 201.3077663 ]
         [190.88486154 189.74608267]
         [ 42.03060013  46.44945536]
         [ 62.01800127  63.00668405]
         [159.28979811 158.37093056]
         [126.65978845 126.26280796]
         [ 86.64871155  87.59938665]
         [136.58228326 136.23598795]
         [ 76.93411617  80.10973443]
         [141.41235614 140.69343212]
         [199.19748035 196.9680135 ]
         [120.79645249 119.32968814]
         [173.18692022 170.83211938]
         [146.96993898 146.07744866]
         [139.31000819 139.45758571]
         [ 99.86313284  99.37633812]
         [ 83.63232759  85.05298366]
         [ 61.45995805  64.04582025]
         [159.5304213  159.08368556]
         [120.28229729 120.78108123]
         [225.93625573 224.25244938]
         [286.05353932 287.72165668]
         [165.66169186 167.91861665]
         [197.95421215 194.94689188]
         [ 70.40035793  71.35611103]
         [139.89076625 139.15500257]]
        [160.79263694 150.6281287  225.5710481  161.80700641 157.71369432
         144.58961694 250.39569639 110.67344587 111.21584102 107.93161795
         122.34617434 180.55849115 161.4535835  200.49417412 229.60354304
         170.57681745 109.09703513 143.71605666 177.00946867 194.23710327
         161.7697504  229.71549579 140.591871    78.02802694 129.5053364
         186.58248135 102.6960668  104.20365368 156.12372213 187.20901614
          89.82145958 237.95082988 207.73770948 209.32169425 197.67298512
          96.07154965  95.09805607  97.25266832 220.52646948 101.27641956
         194.77086843  81.25151312 102.64887002 144.94838244 110.25258101
         213.51721996  79.10616278  81.51256193 103.20741885 216.7643487
          72.0598882  119.05445336 178.45613256 197.31526195 137.70888526
         200.13140539 218.50018565 169.49700466 188.32727388 186.73052546
         140.07357784 121.14922477 231.63901622 201.3077663  189.74608267
          46.44945536  63.00668405 158.37093056 126.26280796  87.59938665
         136.23598795  80.10973443 140.69343212 196.9680135  119.32968814
         170.83211938 146.07744866 139.45758571  99.37633812  85.05298366
          64.04582025 159.08368556 120.78108123 224.25244938 287.72165668
         167.91861665 194.94689188  71.35611103 139.15500257]
        elapsed: 0.021459341049194336
        
         best lambda:  1.2836287759411216
        
         best lambda std. dev:  7.518240463343744
        
         best coef:  [ 152.36008914    0.            0.          478.69081702  163.09825002
            0.            0.         -127.63723154    0.          383.45857834
           14.02212484]
        
         best GLMNet:  {'lambdau': array([4.40344909e+01, 4.01225881e+01, 3.65582080e+01, 3.33104775e+01,
               3.03512665e+01, 2.76549436e+01, 2.51981547e+01, 2.29596201e+01,
               2.09199507e+01, 1.90614799e+01, 1.73681106e+01, 1.58251755e+01,
               1.44193105e+01, 1.31383387e+01, 1.19711649e+01, 1.09076796e+01,
               9.93867143e+00, 9.05574725e+00, 8.25125963e+00, 7.51824046e+00,
               6.85034070e+00, 6.24177531e+00, 5.68727320e+00, 5.18203152e+00,
               4.72167412e+00, 4.30221361e+00, 3.92001681e+00, 3.57177332e+00,
               3.25446682e+00, 2.96534896e+00, 2.70191553e+00, 2.46188480e+00,
               2.24317774e+00, 2.04390001e+00, 1.86232557e+00, 1.69688170e+00,
               1.54613540e+00, 1.40878100e+00, 1.28362878e+00, 1.16959473e+00,
               1.06569116e+00, 9.71018095e-01, 8.84755524e-01, 8.06156282e-01,
               7.34539579e-01, 6.69285108e-01, 6.09827663e-01, 5.55652254e-01,
               5.06289640e-01, 4.61312263e-01, 4.20330553e-01, 3.82989545e-01,
               3.48965810e-01, 3.17964649e-01, 2.89717546e-01, 2.63979838e-01,
               2.40528596e-01, 2.19160699e-01, 1.99691066e-01, 1.81951062e-01,
               1.65787032e-01, 1.51058969e-01, 1.37639306e-01, 1.25411810e-01,
               1.14270570e-01, 1.04119088e-01, 9.48694348e-02, 8.64414957e-02,
               7.87622714e-02, 7.17652483e-02, 6.53898214e-02, 5.95807699e-02,
               5.42877785e-02, 4.94650019e-02, 4.50706675e-02, 4.10667136e-02,
               3.74184599e-02, 3.40943071e-02, 3.10654628e-02, 2.83056927e-02,
               2.57910930e-02, 2.34998834e-02, 2.14122185e-02, 1.95100160e-02,
               1.77768000e-02, 1.61975581e-02, 1.47586116e-02, 1.34474973e-02]), 'cvm': array([5849.67888044, 5588.13049574, 5237.68523549, 4913.35994927,
               4643.97138541, 4420.18846237, 4234.28760402, 4079.94561166,
               3953.4266667 , 3843.20670735, 3742.11421001, 3650.89110401,
               3567.12685974, 3496.28344973, 3438.17453542, 3390.16054415,
               3350.74498364, 3318.09382761, 3291.04560008, 3268.40981966,
               3249.56159518, 3235.42351215, 3224.36750318, 3210.81451391,
               3195.03055142, 3182.43023807, 3170.41713324, 3160.98874011,
               3153.61834888, 3147.36615655, 3140.58675366, 3134.53307657,
               3126.70250974, 3121.53432349, 3118.77235699, 3117.224526  ,
               3116.5750121 , 3116.07320448, 3115.6035719 , 3115.63220558,
               3116.16432467, 3116.61109199, 3116.30815949, 3116.14506076,
               3116.23491199, 3116.51194066, 3117.07327289, 3117.66910598,
               3118.28730793, 3118.94059329, 3119.58984965, 3120.29866814,
               3122.45940284, 3124.65303008, 3126.52180218, 3127.45737901,
               3128.23057335, 3128.3594194 , 3128.33377776, 3127.73013801,
               3127.46559483, 3126.80867588, 3125.85726821, 3125.28303452,
               3124.84520112, 3124.63312595, 3124.43410757, 3124.32847712,
               3124.23076662, 3124.18911129, 3124.06737071, 3124.09365713,
               3124.14154577, 3124.18800616, 3124.32158173, 3124.43107133,
               3124.48930905, 3124.54190509, 3124.61269842, 3124.64999794,
               3124.63934723, 3124.60634785, 3124.59003554, 3124.58808782,
               3124.56949869, 3124.55185597, 3124.55864693, 3124.55978034]), 'cvsd': array([259.52792143, 248.75823371, 221.46767784, 196.31833834,
               177.94632187, 165.15950248, 156.81416851, 151.85850454,
               149.5689093 , 150.20248582, 149.67202475, 146.56506657,
               143.00853209, 140.60041047, 138.55782035, 136.8510055 ,
               135.41484385, 134.23857211, 133.26532408, 132.2940369 ,
               131.49659758, 130.83158262, 130.54053885, 130.02800433,
               129.85450444, 130.97322891, 133.21473862, 135.58414859,
               138.00196431, 140.50827777, 143.37107165, 145.89654308,
               148.34884887, 150.24805302, 152.2145693 , 154.10961339,
               155.93288424, 157.76716921, 159.63011092, 161.33532503,
               162.88557649, 164.32062807, 165.470281  , 166.54562968,
               167.54645567, 168.49635186, 169.37581278, 170.17848841,
               170.94950123, 171.65270522, 172.31624765, 172.88013735,
               172.80109307, 172.76638875, 172.75274784, 173.02037182,
               173.2886591 , 173.4866617 , 173.69450463, 173.79827944,
               173.43628185, 172.75611616, 172.21856656, 171.70858949,
               171.08574087, 170.55631258, 170.09854581, 169.68475556,
               169.32167531, 168.99748594, 168.74915863, 168.50227099,
               168.28568613, 168.08332938, 167.91550145, 167.77407306,
               167.65195892, 167.54167529, 167.44368359, 167.34059865,
               167.23770408, 167.14209302, 167.05532325, 166.97480747,
               166.90199522, 166.83948792, 166.77940688, 166.7253628 ]), 'cvup': array([6109.20680187, 5836.88872945, 5459.15291333, 5109.67828761,
               4821.91770728, 4585.34796485, 4391.10177253, 4231.8041162 ,
               4102.995576  , 3993.40919317, 3891.78623476, 3797.45617058,
               3710.13539183, 3636.8838602 , 3576.73235577, 3527.01154965,
               3486.15982749, 3452.33239972, 3424.31092416, 3400.70385656,
               3381.05819276, 3366.25509477, 3354.90804202, 3340.84251824,
               3324.88505586, 3313.40346698, 3303.63187186, 3296.5728887 ,
               3291.62031319, 3287.87443432, 3283.95782531, 3280.42961965,
               3275.05135861, 3271.7823765 , 3270.9869263 , 3271.3341394 ,
               3272.50789634, 3273.84037369, 3275.23368282, 3276.96753061,
               3279.04990117, 3280.93172006, 3281.77844048, 3282.69069045,
               3283.78136765, 3285.00829252, 3286.44908566, 3287.84759439,
               3289.23680916, 3290.59329851, 3291.9060973 , 3293.17880549,
               3295.26049591, 3297.41941883, 3299.27455002, 3300.47775083,
               3301.51923245, 3301.8460811 , 3302.02828239, 3301.52841745,
               3300.90187668, 3299.56479204, 3298.07583477, 3296.99162401,
               3295.93094198, 3295.18943853, 3294.53265338, 3294.01323268,
               3293.55244193, 3293.18659723, 3292.81652934, 3292.59592812,
               3292.4272319 , 3292.27133554, 3292.23708318, 3292.2051444 ,
               3292.14126797, 3292.08358038, 3292.05638201, 3291.99059659,
               3291.87705131, 3291.74844088, 3291.64535879, 3291.56289529,
               3291.47149391, 3291.39134388, 3291.33805381, 3291.28514314]), 'cvlo': array([5590.15095901, 5339.37226204, 5016.21755765, 4717.04161093,
               4466.02506353, 4255.0289599 , 4077.47343551, 3928.08710712,
               3803.85775741, 3693.00422154, 3592.44218526, 3504.32603744,
               3424.11832765, 3355.68303927, 3299.61671507, 3253.30953865,
               3215.33013978, 3183.85525549, 3157.78027601, 3136.11578276,
               3118.0649976 , 3104.59192953, 3093.82696433, 3080.78650958,
               3065.17604697, 3051.45700916, 3037.20239462, 3025.40459152,
               3015.61638456, 3006.85787878, 2997.21568202, 2988.63653348,
               2978.35366087, 2971.28627047, 2966.55778769, 2963.11491261,
               2960.64212786, 2958.30603527, 2955.97346098, 2954.29688055,
               2953.27874818, 2952.29046392, 2950.83787849, 2949.59943108,
               2948.68845632, 2948.0155888 , 2947.69746011, 2947.49061756,
               2947.3378067 , 2947.28788807, 2947.27360201, 2947.41853078,
               2949.65830978, 2951.88664133, 2953.76905433, 2954.43700719,
               2954.94191425, 2954.87275769, 2954.63927313, 2953.93185857,
               2954.02931298, 2954.05255971, 2953.63870164, 2953.57444503,
               2953.75946025, 2954.07681336, 2954.33556176, 2954.64372156,
               2954.90909131, 2955.19162535, 2955.31821208, 2955.59138614,
               2955.85585964, 2956.10467679, 2956.40608028, 2956.65699827,
               2956.83735013, 2957.0002298 , 2957.16901484, 2957.30939929,
               2957.40164314, 2957.46425483, 2957.5347123 , 2957.61328035,
               2957.66750348, 2957.71236805, 2957.77924005, 2957.83441753]), 'nzero': array([ 0,  1,  2,  2,  2,  2,  2,  2,  2,  3,  4,  4,  4,  4,  4,  4,  4,
                5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  7,  7,
                7,  7,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,
                8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  8,  9,  9,  9,  9,
               10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
               10, 10, 10]), 'name': 'Mean-Squared Error', 'glmnet_fit': {'a0': array([152.42776204, 152.42566409, 152.43276797, 152.44073179,
               152.44798822, 152.45459811, 152.46062269, 152.46611206,
               152.47111377, 152.47445162, 152.47048801, 152.45602272,
               152.44285433, 152.43085578, 152.41992316, 152.40996176,
               152.4008853 , 152.38972315, 152.37419946, 152.36008914,
               152.3472322 , 152.33551743, 152.32484337, 152.31445325,
               152.30457294, 152.29565898, 152.2875366 , 152.28013579,
               152.27233919, 152.25527491, 152.23909998, 152.22445076,
               152.2111053 , 152.19894546, 152.18786587, 152.17777057,
               152.1685721 , 152.15730549, 152.14410824, 152.13217008,
               152.12118064, 152.1112707 , 152.102268  , 152.09394524,
               152.08646062, 152.07967323, 152.07337   , 152.06772299,
               152.06248036, 152.05779897, 152.05344349, 152.04956603,
               152.04594958, 152.04274165, 152.03974152, 152.03723678,
               152.03770233, 152.03883229, 152.03986205, 152.04079072,
               152.041649  , 152.04242696, 152.04313295, 152.04338785,
               152.04364361, 152.04392876, 152.04419377, 152.0444226 ,
               152.0447089 , 152.04530852, 152.04554794, 152.0457575 ,
               152.04595716, 152.04613018, 152.04629475, 152.04644218,
               152.04657382, 152.0466978 , 152.0468066 , 152.0469082 ,
               152.04700243, 152.04708911, 152.04716156, 152.04723421,
               152.04729311, 152.04735235, 152.04740486, 152.04745049]), 'beta': array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00, -2.57050755e-01, -6.60326286e-01,
                -9.78489254e-01, -1.26685258e+00, -1.53621534e+00,
                -1.97998984e+00, -2.33787474e+00, -2.66018889e+00,
                -2.95822820e+00, -3.22526923e+00, -3.47211745e+00,
                -3.69568054e+00, -3.89802418e+00, -4.08448852e+00,
                -4.25217821e+00, -4.40633136e+00, -4.54760761e+00,
                -4.67674008e+00, -4.79098332e+00, -4.89877047e+00,
                -4.99301452e+00, -5.08205906e+00, -5.16234069e+00,
                -5.23446789e+00],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00, -1.49446624e+01,
                -3.33086438e+01, -4.99701883e+01, -6.51519098e+01,
                -7.89849273e+01, -9.14807107e+01, -1.02558316e+02,
                -1.12553874e+02, -1.21673779e+02, -1.29983486e+02,
                -1.37554982e+02, -1.44453847e+02, -1.50739836e+02,
                -1.56467395e+02, -1.62068215e+02, -1.67199275e+02,
                -1.71883535e+02, -1.76140004e+02, -1.80029098e+02,
                -1.83575513e+02, -1.86794371e+02, -1.89737633e+02,
                -1.92422931e+02, -1.94857087e+02, -1.97085482e+02,
                -1.99105321e+02, -2.00956533e+02, -2.02633054e+02,
                -2.04171528e+02, -2.05563237e+02, -2.06842288e+02,
                -2.07997804e+02, -2.09060396e+02, -2.10339592e+02,
                -2.11701852e+02, -2.12943164e+02, -2.14069597e+02,
                -2.15101772e+02, -2.16040314e+02, -2.16894118e+02,
                -2.17720672e+02, -2.18460918e+02, -2.19212695e+02,
                -2.19879074e+02, -2.20478047e+02, -2.21040126e+02,
                -2.21464981e+02, -2.21782875e+02, -2.22068384e+02,
                -2.22333206e+02, -2.22569663e+02, -2.22788891e+02,
                -2.22987204e+02, -2.23166444e+02, -2.23331996e+02,
                -2.23480492e+02, -2.23617233e+02, -2.23742706e+02,
                -2.23857470e+02, -2.23958401e+02, -2.24054259e+02,
                -2.24137436e+02, -2.24216526e+02, -2.24287751e+02,
                -2.24351589e+02],
               [ 0.00000000e+00,  8.12690155e+01,  1.36371438e+02,
                 1.83441721e+02,  2.26329677e+02,  2.65424715e+02,
                 3.01029532e+02,  3.33471311e+02,  3.63031051e+02,
                 3.85363952e+02,  4.02298321e+02,  4.14560699e+02,
                 4.25779668e+02,  4.36001929e+02,  4.45316073e+02,
                 4.53802774e+02,  4.61535540e+02,  4.68218469e+02,
                 4.73667496e+02,  4.78690817e+02,  4.83267733e+02,
                 4.87438049e+02,  4.91237886e+02,  4.92787323e+02,
                 4.93507456e+02,  4.94238917e+02,  4.94904948e+02,
                 4.95511813e+02,  4.96218138e+02,  4.97513685e+02,
                 4.98767866e+02,  4.99952852e+02,  5.01034299e+02,
                 5.02019709e+02,  5.02917578e+02,  5.03735683e+02,
                 5.04481110e+02,  5.05182886e+02,  5.05982344e+02,
                 5.06697422e+02,  5.07366395e+02,  5.07959876e+02,
                 5.08496411e+02,  5.09003963e+02,  5.09450892e+02,
                 5.09852635e+02,  5.10237791e+02,  5.10572273e+02,
                 5.10893667e+02,  5.11168610e+02,  5.11436170e+02,
                 5.11660454e+02,  5.11883126e+02,  5.12064493e+02,
                 5.12249641e+02,  5.12397142e+02,  5.12110707e+02,
                 5.11537926e+02,  5.11015923e+02,  5.10547161e+02,
                 5.10111373e+02,  5.09717193e+02,  5.09360059e+02,
                 5.09062511e+02,  5.08773585e+02,  5.08352963e+02,
                 5.08021209e+02,  5.07729466e+02,  5.07439254e+02,
                 5.07147323e+02,  5.07002339e+02,  5.06877126e+02,
                 5.06755269e+02,  5.06652272e+02,  5.06552156e+02,
                 5.06463320e+02,  5.06384795e+02,  5.06309534e+02,
                 5.06244857e+02,  5.06183541e+02,  5.06126213e+02,
                 5.06073252e+02,  5.06031044e+02,  5.05986114e+02,
                 5.05952149e+02,  5.05915669e+02,  5.05883889e+02,
                 5.05856727e+02],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 1.70132045e+01,  3.85628559e+01,  5.85831519e+01,
                 7.68171853e+01,  9.34313567e+01,  1.08569571e+02,
                 1.22362948e+02,  1.34930959e+02,  1.45883461e+02,
                 1.54892818e+02,  1.63098250e+02,  1.70574758e+02,
                 1.77387073e+02,  1.83594201e+02,  1.91698488e+02,
                 1.99877350e+02,  2.07309626e+02,  2.14081739e+02,
                 2.20252235e+02,  2.25836131e+02,  2.30854142e+02,
                 2.35350216e+02,  2.39480301e+02,  2.43244261e+02,
                 2.46673858e+02,  2.49798780e+02,  2.52646093e+02,
                 2.55240458e+02,  2.58060407e+02,  2.61002208e+02,
                 2.63672892e+02,  2.66118970e+02,  2.68336072e+02,
                 2.70353151e+02,  2.72204610e+02,  2.73880339e+02,
                 2.75403355e+02,  2.76804780e+02,  2.78070207e+02,
                 2.79234835e+02,  2.80284018e+02,  2.81251353e+02,
                 2.82120520e+02,  2.82923836e+02,  2.83643348e+02,
                 2.84310210e+02,  2.84907333e+02,  2.85740812e+02,
                 2.86495875e+02,  2.87183902e+02,  2.87806755e+02,
                 2.88379402e+02,  2.88899485e+02,  2.89372184e+02,
                 2.89761820e+02,  2.90051027e+02,  2.90329831e+02,
                 2.90583199e+02,  2.90814356e+02,  2.91023079e+02,
                 2.91367320e+02,  2.91724450e+02,  2.92045544e+02,
                 2.92343586e+02,  2.92609412e+02,  2.92856115e+02,
                 2.93079121e+02,  2.93280599e+02,  2.93466879e+02,
                 2.93633725e+02,  2.93787566e+02,  2.93928760e+02,
                 2.94057918e+02,  2.94171205e+02,  2.94279355e+02,
                 2.94372739e+02,  2.94462054e+02,  2.94542347e+02,
                 2.94614283e+02],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00, -1.36641339e+01,
                -2.56949353e+01, -3.65339408e+01, -4.64069841e+01,
                -5.54028686e+01, -6.35995821e+01, -7.10681220e+01,
                -7.78731775e+01, -8.94539161e+01, -1.06025634e+02,
                -1.20932997e+02, -1.34763877e+02, -1.47137268e+02,
                -1.58351801e+02, -1.68835741e+02, -1.78169083e+02,
                -1.86601030e+02, -1.94548188e+02, -2.01574005e+02,
                -2.08193300e+02, -2.14009275e+02, -2.19511594e+02,
                -2.24317764e+02, -2.28887356e+02, -2.32851213e+02,
                -2.36640315e+02, -2.40139689e+02, -2.79565543e+02,
                -3.25766382e+02, -3.67869415e+02, -4.05713131e+02,
                -4.40850849e+02, -4.72649495e+02, -5.01471039e+02,
                -5.17176076e+02, -5.23163263e+02, -5.29752212e+02,
                -5.35582429e+02, -5.40762533e+02, -5.45810791e+02,
                -5.68995791e+02, -5.89704343e+02, -6.08087375e+02,
                -6.25426021e+02, -6.40610244e+02, -6.54925655e+02,
                -6.67781833e+02, -6.79311821e+02, -6.90104449e+02,
                -6.99633636e+02, -7.08506133e+02, -7.16700489e+02,
                -7.24221664e+02, -7.30607557e+02, -7.36940752e+02,
                -7.42167947e+02, -7.47370783e+02, -7.51998243e+02,
                -7.56081896e+02],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00, -9.68976845e-01,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  3.68720080e-01,  3.09620058e+01,
                 6.78004170e+01,  1.01371378e+02,  1.31560071e+02,
                 1.59572246e+02,  1.84928184e+02,  2.07914199e+02,
                 2.20954218e+02,  2.27129841e+02,  2.33995226e+02,
                 2.40051777e+02,  2.45431838e+02,  2.50673347e+02,
                 2.69236079e+02,  2.85159056e+02,  2.99290150e+02,
                 3.12619423e+02,  3.24291879e+02,  3.35296858e+02,
                 3.45180286e+02,  3.54043950e+02,  3.62340771e+02,
                 3.69666591e+02,  3.76487111e+02,  3.82786560e+02,
                 3.88568616e+02,  3.93477958e+02,  3.98345510e+02,
                 4.02363641e+02,  4.06361744e+02,  4.09917999e+02,
                 4.13055709e+02],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00, -7.42047513e+00, -2.64227558e+01,
                -4.37192376e+01, -5.94791524e+01, -7.38389999e+01,
                -8.69231581e+01, -9.88449557e+01, -1.09571014e+02,
                -1.19034491e+02, -1.27637232e+02, -1.35475817e+02,
                -1.42618044e+02, -1.49125776e+02, -1.61151255e+02,
                -1.74158633e+02, -1.85931064e+02, -1.96657994e+02,
                -2.06431972e+02, -2.15283466e+02, -2.18436551e+02,
                -2.21382759e+02, -2.24160360e+02, -2.26693300e+02,
                -2.29001265e+02, -2.31104198e+02, -2.33020313e+02,
                -2.34766205e+02, -2.29197167e+02, -2.16487393e+02,
                -2.05147275e+02, -1.94504046e+02, -1.85092964e+02,
                -1.76592652e+02, -1.68514654e+02, -1.61428957e+02,
                -1.55063466e+02, -1.48932141e+02, -1.43616020e+02,
                -1.38498773e+02, -1.34107644e+02, -1.29850450e+02,
                -1.26234871e+02, -1.22698301e+02, -1.19732541e+02,
                -1.16801703e+02, -1.14415778e+02, -9.70975143e+01,
                -7.79478962e+01, -6.04966620e+01, -4.48311763e+01,
                -3.02597389e+01, -1.70813532e+01, -5.14262258e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  9.51704287e-02,
                 1.00979264e+01,  1.98453510e+01,  2.85092746e+01,
                 3.66716835e+01,  4.38287086e+01,  5.05691226e+01,
                 5.66246632e+01,  6.20583085e+01,  6.71405249e+01,
                 7.16315311e+01,  7.58109830e+01,  7.96692228e+01,
                 8.32096263e+01,  8.62217260e+01,  8.92032380e+01,
                 9.16703718e+01,  9.41212923e+01,  9.63022628e+01,
                 9.82294421e+01],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  1.07249423e+01,  2.98708205e+01,
                 4.70612024e+01,  6.30535776e+01,  7.73214769e+01,
                 9.02427037e+01,  1.02368722e+02,  1.13126474e+02,
                 1.22832215e+02,  1.32026948e+02,  1.40117597e+02,
                 1.47779805e+02,  1.54471866e+02,  1.60842617e+02,
                 1.66364359e+02,  1.71656130e+02,  1.76198467e+02,
                 1.80586841e+02,  1.84136116e+02,  1.90324243e+02,
                 1.95603639e+02,  2.00414755e+02,  2.04723395e+02,
                 2.08744265e+02,  2.12376626e+02,  2.15664449e+02,
                 2.16223112e+02,  2.14236250e+02,  2.11891816e+02,
                 2.09849933e+02,  2.08046446e+02,  2.06334688e+02,
                 2.09048000e+02,  2.12635649e+02,  2.15838921e+02,
                 2.18843627e+02,  2.21490940e+02,  2.23973928e+02,
                 2.26207991e+02,  2.28216571e+02,  2.30089459e+02,
                 2.31750108e+02,  2.33292294e+02,  2.34713473e+02,
                 2.36016351e+02,  2.37133821e+02,  2.38230875e+02,
                 2.39148329e+02,  2.40052084e+02,  2.40858196e+02,
                 2.41574016e+02],
               [ 0.00000000e+00,  0.00000000e+00,  4.39167099e+01,
                 9.11948248e+01,  1.34273201e+02,  1.73517156e+02,
                 2.09282242e+02,  2.41870058e+02,  2.71562863e+02,
                 2.94523024e+02,  3.11724868e+02,  3.23628840e+02,
                 3.34465299e+02,  3.44339094e+02,  3.53335729e+02,
                 3.61533128e+02,  3.69002292e+02,  3.75138158e+02,
                 3.79492227e+02,  3.83458578e+02,  3.87072520e+02,
                 3.90365409e+02,  3.93365767e+02,  3.95111217e+02,
                 3.96238866e+02,  3.97315160e+02,  3.98295771e+02,
                 3.99189268e+02,  4.00198190e+02,  4.08663636e+02,
                 4.16302632e+02,  4.23144408e+02,  4.29375211e+02,
                 4.35052422e+02,  4.40225282e+02,  4.44938601e+02,
                 4.49233201e+02,  4.51860678e+02,  4.54350055e+02,
                 4.56591666e+02,  4.58667887e+02,  4.60528445e+02,
                 4.62215542e+02,  4.63789062e+02,  4.65192798e+02,
                 4.66462188e+02,  4.67654746e+02,  4.68712723e+02,
                 4.69705653e+02,  4.70583274e+02,  4.71408346e+02,
                 4.72137042e+02,  4.72821750e+02,  4.73428395e+02,
                 4.73995322e+02,  4.74609787e+02,  4.88709192e+02,
                 5.05740213e+02,  5.21260699e+02,  5.35211675e+02,
                 5.48164290e+02,  5.59886261e+02,  5.70510921e+02,
                 5.76543528e+02,  5.79304110e+02,  5.82431273e+02,
                 5.85176234e+02,  5.87610894e+02,  5.89984755e+02,
                 5.98595185e+02,  6.06028752e+02,  6.12621941e+02,
                 6.18846132e+02,  6.24291474e+02,  6.29429657e+02,
                 6.34042562e+02,  6.38177930e+02,  6.42051372e+02,
                 6.45468850e+02,  6.48652331e+02,  6.51593539e+02,
                 6.54293636e+02,  6.56582200e+02,  6.58856110e+02,
                 6.60728503e+02,  6.62595845e+02,  6.64255708e+02,
                 6.65719010e+02],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  2.22420700e+00,
                 8.40506170e+00,  1.40221248e+01,  1.91402273e+01,
                 2.38036515e+01,  2.80527900e+01,  3.35745064e+01,
                 3.91912042e+01,  4.42732349e+01,  4.89039329e+01,
                 5.31232518e+01,  5.71159051e+01,  6.22997267e+01,
                 6.71436153e+01,  7.15185283e+01,  7.55036834e+01,
                 7.91347844e+01,  8.24433079e+01,  8.54579112e+01,
                 8.82047055e+01,  9.04601432e+01,  9.24531001e+01,
                 9.42683183e+01,  9.59231132e+01,  9.74301242e+01,
                 9.88030833e+01,  1.00054948e+02,  1.01194963e+02,
                 1.02233707e+02,  1.03180712e+02,  1.04043665e+02,
                 1.04829883e+02,  1.05547098e+02,  1.06199712e+02,
                 1.06796261e+02,  1.07337852e+02,  1.07834246e+02,
                 1.08283591e+02,  1.08676167e+02,  1.08790144e+02,
                 1.08924256e+02,  1.09046456e+02,  1.09158016e+02,
                 1.09259390e+02,  1.09351846e+02,  1.09436149e+02,
                 1.09513219e+02,  1.09652233e+02,  1.09844120e+02,
                 1.09991972e+02,  1.10125028e+02,  1.10252188e+02,
                 1.10368743e+02,  1.10441912e+02,  1.10508143e+02,
                 1.10568876e+02,  1.10623828e+02,  1.10674197e+02,
                 1.10719990e+02,  1.10761597e+02,  1.10799677e+02,
                 1.10834205e+02,  1.10865760e+02,  1.10894585e+02,
                 1.10920886e+02,  1.10944569e+02,  1.10966411e+02,
                 1.10985993e+02,  1.11004066e+02,  1.11020463e+02,
                 1.11035326e+02]]), 'dev': array([0.        , 0.05641001, 0.11880048, 0.17305008, 0.21808882,
               0.2554852 , 0.28652791, 0.31230011, 0.33369665, 0.35412118,
               0.37300264, 0.39032216, 0.40470384, 0.41664375, 0.42655648,
               0.4347862 , 0.44161866, 0.44738094, 0.45231927, 0.4564217 ,
               0.45982761, 0.46265525, 0.46500281, 0.46891586, 0.472756  ,
               0.47593769, 0.47857921, 0.48077224, 0.48266112, 0.4850628 ,
               0.48708015, 0.48875059, 0.49013731, 0.49128859, 0.4922444 ,
               0.49303793, 0.49369674, 0.49444377, 0.49525646, 0.49592659,
               0.49648931, 0.49695178, 0.4973351 , 0.49765856, 0.49792371,
               0.49814318, 0.49832939, 0.49848145, 0.49861048, 0.49871548,
               0.49880484, 0.49887732, 0.49893924, 0.49898927, 0.49903219,
               0.49906914, 0.49939168, 0.49974097, 0.50003231, 0.50027232,
               0.50047642, 0.50064571, 0.5007865 , 0.50086059, 0.50089074,
               0.50092133, 0.50094613, 0.50096647, 0.50098483, 0.50107352,
               0.50114759, 0.50120815, 0.50126073, 0.50130323, 0.50134019,
               0.50137086, 0.50139632, 0.5014184 , 0.50143649, 0.50145215,
               0.50146558, 0.50147706, 0.50148616, 0.5014946 , 0.50150113,
               0.50150723, 0.50151232, 0.50151656]), 'nulldev': array([3.08783547e+02, 5.68934729e+03, 1.06973020e+04, 7.46975805e+03,
               7.10271730e+01, 1.55454842e+03, 6.49188553e+03, 9.16277396e+01,
               9.87704227e+02, 4.15093652e+03, 2.23718544e+04, 5.96715558e+02,
               1.00857354e+04, 6.53939354e+02, 3.89722547e+03, 1.33916691e+02,
               3.03726890e+02, 2.44310366e+03, 2.26311782e+03, 6.53939354e+02,
               1.17879309e+04, 7.81946910e+03, 8.72874672e+03, 5.39163624e+03,
               1.11150130e+04, 2.06368156e+03, 1.28658572e+04, 2.03850444e+00,
               2.34524814e+03, 4.16957392e+03, 6.33174105e+03, 9.49216882e+03,
               8.56961924e+03, 4.59148986e+02, 7.81946910e+03, 4.84029629e+03,
               9.32619714e+03, 5.96715558e+02, 1.97605541e+04, 2.08160317e+02,
               1.45376646e+04, 3.10498359e+01, 2.42494595e+02, 2.44310366e+03,
               1.54449269e+02, 4.13161248e+01, 1.55182425e+04, 1.32698185e+03,
               6.49188553e+03, 3.41380338e+03, 2.03268430e+04, 1.48781754e+03,
               7.84504134e+03, 2.47193220e+00, 1.30593745e+02, 9.91463057e+03,
               2.07682887e+03, 1.83798317e+04, 2.64481471e+03, 7.06083830e+02,
               5.48860034e+02, 4.65361451e+02, 3.77336995e+03, 4.68235862e+03,
               6.03794878e+02, 4.43186287e+03, 7.29790253e+03, 1.55454842e+03,
               6.79433595e+03, 9.88587986e+03, 5.89402852e+00, 1.26400017e+04,
               1.11454974e+04, 2.42494595e+02, 1.70491093e+04, 9.91463057e+03,
               1.19744351e+04, 6.15091386e+03, 5.53949176e+03, 3.20041811e+03,
               1.38232311e+04, 3.89722547e+03, 6.30876938e+03, 2.48290102e+04,
               2.54295918e+03, 1.40083737e+03, 4.54650309e+03, 2.34524814e+03,
               7.12804700e+03, 2.64481471e+03, 1.80304793e+02, 7.99732462e+03,
               6.46862491e+03, 8.91660224e+03, 4.59148986e+02, 6.63048043e+03,
               2.96238128e+03, 4.15093652e+03, 1.55182425e+04, 2.34524814e+03,
               2.12350119e+02, 1.97382604e+03, 1.71625947e+03, 3.79114049e+03,
               3.03726890e+02, 1.89853992e+03, 1.33752859e+03, 5.68934729e+03,
               5.26672972e+03, 8.54289120e+03, 7.29790253e+03, 1.94804096e+04,
               8.88826971e+01, 1.65308204e+04, 1.62378345e+04, 2.26311782e+03,
               3.77336995e+03, 1.22262198e+04, 3.29794785e+03, 7.10271730e+01,
               6.33174105e+03, 1.88597052e+03, 1.02875909e+04, 7.81946910e+03,
               1.70491093e+04, 1.13576419e+04, 3.79114049e+03, 8.54289120e+03,
               1.71625947e+03, 1.11454974e+04, 7.12804700e+03, 4.65361451e+02,
               1.18527080e+03, 1.55454842e+03, 2.35844323e+04, 6.79433595e+03,
               5.53949176e+03, 1.48781754e+03, 4.56600734e+03, 9.34661734e+02,
               8.08137655e+02, 1.17565796e+04, 7.99732462e+03, 1.47669290e+03,
               5.86330763e+03, 5.68934729e+03, 2.42494595e+02, 1.20060753e+04,
               3.77336995e+03, 4.54650309e+03, 5.48860034e+02, 3.41380338e+03,
               5.51716489e+01, 8.02318581e+03, 1.13576419e+04, 1.38232311e+04,
               1.30593745e+02, 1.42975201e+04, 1.08738221e+02, 1.52700980e+04,
               7.64361358e+03, 6.81817448e+03, 1.06095069e+03, 8.56961924e+03,
               6.63048043e+03, 6.46862491e+03, 2.26311782e+03, 5.73387877e+01,
               2.64481471e+03, 4.59148986e+02, 4.82021414e+03, 2.45740678e+03,
               9.87704227e+02, 6.53939354e+02, 4.16957392e+03, 4.41264757e+03,
               1.62746759e+04, 6.01745210e+03, 8.75576372e+03, 5.96715558e+02,
               4.54650309e+03, 1.21942906e+04, 4.15093652e+03, 2.34524814e+03,
               8.88826971e+01, 7.60228306e+02, 8.16372782e+02, 1.09051575e+04,
               6.63048043e+03, 9.25848703e+02, 1.00857354e+04, 1.82980363e-01,
               2.03850444e+00, 1.65308204e+04, 9.88587986e+03, 4.15093652e+03,
               1.47798090e+04, 6.61640812e+00, 1.60205314e+04, 5.48860034e+02,
               1.22262198e+04, 1.09353530e+04, 4.56600734e+03, 1.09051575e+04,
               3.53165890e+03, 5.96715558e+02, 1.08738221e+02, 1.82980363e-01,
               1.02875909e+04, 7.99732462e+03, 8.20333029e+03, 4.28079205e+03,
               1.41167307e+03, 6.46862491e+03, 6.63048043e+03, 6.96019148e+03,
               2.74867023e+03, 2.69871366e+02, 1.80304793e+02, 1.11772215e+02,
               1.89853992e+03, 1.80011499e+03, 2.26311782e+03, 3.08783547e+02,
               2.26719988e+04, 2.26311782e+03, 2.70840215e+04, 1.21942906e+04,
               1.65308204e+04, 3.83072499e+02, 1.50239535e+04, 2.48290102e+04,
               8.35903567e+03, 3.74702113e+04, 7.64361358e+03, 4.02308100e+03,
               3.07223680e+03, 4.56600734e+03, 1.41167307e+03, 9.49216882e+03,
               5.10192519e+03, 4.82021414e+03, 1.84205643e+02, 6.98431896e+03,
               1.32698185e+03, 1.50239535e+04, 1.50239535e+04, 8.38547477e+03,
               9.49216882e+03, 4.54650309e+03, 1.18527080e+03, 1.08738221e+02,
               1.18527080e+03, 3.39582414e+02, 6.15091386e+03, 2.42027212e+04,
               9.91463057e+03, 1.11150130e+04, 1.04914464e+04, 8.02318581e+03,
               2.07682887e+03, 6.98426606e+02, 1.65308204e+04, 3.07223680e+03,
               2.86998468e+03, 6.53939354e+02, 1.00857354e+04, 1.01147750e+04,
               3.89722547e+03, 5.26672972e+03, 5.99505833e+03, 3.07223680e+03,
               1.24483643e+04, 4.59148986e+02, 7.10271730e+01, 2.45740678e+03,
               1.06095069e+03, 4.70215182e+03, 2.38015842e+02, 3.65151443e+03,
               1.33569422e+04, 2.51451547e+04, 1.19523964e+03, 3.27456283e-01,
               2.45740678e+03, 1.09353530e+04, 1.98668440e+03, 1.98668440e+03,
               9.10645777e+03, 1.09051575e+04, 5.09505927e+02, 3.18409233e+03,
               4.68235862e+03, 6.46571082e+02, 6.53939354e+02, 2.85452576e+03,
               2.54295918e+03, 2.94606008e+01, 2.16897335e+03, 6.63048043e+03,
               1.56596202e+03, 1.06973020e+04, 2.35926230e+03, 1.33569422e+04,
               3.08783547e+02, 3.22461886e+04, 8.20333029e+03, 7.06083830e+02,
               1.06973020e+04, 1.88597052e+03, 3.89722547e+03, 2.06368156e+03,
               1.96050767e+01, 1.00857354e+04, 4.82021414e+03, 8.74517258e+02,
               1.42975201e+04, 7.15246343e+03, 1.05155975e+03, 7.64361358e+03,
               4.17293462e+02, 3.89722547e+03, 4.04142944e+03, 1.30593745e+02,
               7.60228306e+02, 8.08137655e+02, 5.73387877e+01, 6.61640812e+00,
               3.41380338e+03, 5.89402852e+00, 6.46862491e+03, 3.29794785e+03,
               8.16372782e+02, 8.72874672e+03, 5.68934729e+03, 3.55594889e+04,
               1.71625947e+03, 1.08738221e+02, 2.85452576e+03, 2.09011320e+04,
               5.89402852e+00, 3.08827363e+03, 7.64361358e+03, 1.33235682e+04,
               4.68235862e+03, 3.39582414e+02, 3.31456258e+03, 7.10271730e+01,
               4.56600734e+03, 3.65151443e+03, 8.02318581e+03, 4.17293462e+02,
               2.86998468e+03]), 'df': array([ 0,  1,  2,  2,  2,  2,  2,  2,  2,  3,  4,  4,  4,  4,  4,  4,  4,
                5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  7,  7,
                7,  7,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,
                8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  8,  9,  9,  9,  9,
               10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
               10, 10, 10]), 'lambdau': array([4.40344909e+01, 4.01225881e+01, 3.65582080e+01, 3.33104775e+01,
               3.03512665e+01, 2.76549436e+01, 2.51981547e+01, 2.29596201e+01,
               2.09199507e+01, 1.90614799e+01, 1.73681106e+01, 1.58251755e+01,
               1.44193105e+01, 1.31383387e+01, 1.19711649e+01, 1.09076796e+01,
               9.93867143e+00, 9.05574725e+00, 8.25125963e+00, 7.51824046e+00,
               6.85034070e+00, 6.24177531e+00, 5.68727320e+00, 5.18203152e+00,
               4.72167412e+00, 4.30221361e+00, 3.92001681e+00, 3.57177332e+00,
               3.25446682e+00, 2.96534896e+00, 2.70191553e+00, 2.46188480e+00,
               2.24317774e+00, 2.04390001e+00, 1.86232557e+00, 1.69688170e+00,
               1.54613540e+00, 1.40878100e+00, 1.28362878e+00, 1.16959473e+00,
               1.06569116e+00, 9.71018095e-01, 8.84755524e-01, 8.06156282e-01,
               7.34539579e-01, 6.69285108e-01, 6.09827663e-01, 5.55652254e-01,
               5.06289640e-01, 4.61312263e-01, 4.20330553e-01, 3.82989545e-01,
               3.48965810e-01, 3.17964649e-01, 2.89717546e-01, 2.63979838e-01,
               2.40528596e-01, 2.19160699e-01, 1.99691066e-01, 1.81951062e-01,
               1.65787032e-01, 1.51058969e-01, 1.37639306e-01, 1.25411810e-01,
               1.14270570e-01, 1.04119088e-01, 9.48694348e-02, 8.64414957e-02,
               7.87622714e-02, 7.17652483e-02, 6.53898214e-02, 5.95807699e-02,
               5.42877785e-02, 4.94650019e-02, 4.50706675e-02, 4.10667136e-02,
               3.74184599e-02, 3.40943071e-02, 3.10654628e-02, 2.83056927e-02,
               2.57910930e-02, 2.34998834e-02, 2.14122185e-02, 1.95100160e-02,
               1.77768000e-02, 1.61975581e-02, 1.47586116e-02, 1.34474973e-02]), 'npasses': 1211, 'jerr': 0, 'dim': array([10, 88]), 'offset': False, 'class': 'elnet'}, 'lambda_min': array([1.28362878]), 'lambda_1se': array([7.51824046]), 'class': 'cvglmnet'}
        
        
         dataset: fetch_california_housing -------------------
        {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'gaussian', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
        elapsed: 0.0047762393951416016
        	 df 	 %dev 	 lambdau
        
        0 	 0.000000 	 0.000000 	 0.790539
        1 	 1.000000 	 0.079846 	 0.720310
        2 	 1.000000 	 0.146136 	 0.656320
        3 	 1.000000 	 0.201171 	 0.598014
        4 	 1.000000 	 0.246862 	 0.544888
        5 	 1.000000 	 0.284796 	 0.496482
        6 	 1.000000 	 0.316289 	 0.452376
        7 	 1.000000 	 0.342435 	 0.412188
        8 	 1.000000 	 0.364142 	 0.375570
        9 	 1.000000 	 0.382163 	 0.342206
        10 	 1.000000 	 0.397125 	 0.311805
        11 	 1.000000 	 0.409546 	 0.284105
        12 	 1.000000 	 0.419859 	 0.258866
        13 	 1.000000 	 0.428421 	 0.235869
        14 	 1.000000 	 0.435529 	 0.214915
        15 	 1.000000 	 0.441430 	 0.195823
        16 	 2.000000 	 0.451591 	 0.178426
        17 	 2.000000 	 0.460828 	 0.162575
        18 	 2.000000 	 0.468496 	 0.148133
        19 	 2.000000 	 0.474863 	 0.134973
        20 	 2.000000 	 0.480149 	 0.122982
        21 	 3.000000 	 0.484680 	 0.112057
        22 	 3.000000 	 0.489706 	 0.102102
        23 	 3.000000 	 0.493879 	 0.093032
        24 	 3.000000 	 0.497344 	 0.084767
        25 	 3.000000 	 0.500220 	 0.077236
        26 	 3.000000 	 0.502608 	 0.070375
        27 	 4.000000 	 0.507848 	 0.064123
        28 	 4.000000 	 0.521856 	 0.058427
        29 	 4.000000 	 0.533472 	 0.053236
        30 	 4.000000 	 0.543117 	 0.048507
        31 	 4.000000 	 0.551159 	 0.044198
        32 	 4.000000 	 0.557809 	 0.040271
        33 	 6.000000 	 0.563606 	 0.036694
        34 	 6.000000 	 0.569117 	 0.033434
        35 	 6.000000 	 0.573708 	 0.030464
        36 	 6.000000 	 0.577542 	 0.027757
        37 	 6.000000 	 0.580708 	 0.025291
        38 	 6.000000 	 0.583337 	 0.023045
        39 	 6.000000 	 0.585536 	 0.020997
        40 	 6.000000 	 0.587350 	 0.019132
        41 	 7.000000 	 0.589628 	 0.017432
        42 	 7.000000 	 0.591806 	 0.015884
        43 	 7.000000 	 0.593641 	 0.014473
        44 	 7.000000 	 0.595162 	 0.013187
        45 	 7.000000 	 0.596442 	 0.012015
        46 	 7.000000 	 0.597491 	 0.010948
        47 	 7.000000 	 0.598376 	 0.009975
        48 	 7.000000 	 0.599099 	 0.009089
        49 	 7.000000 	 0.599711 	 0.008282
        50 	 7.000000 	 0.600209 	 0.007546
        51 	 7.000000 	 0.600633 	 0.006876
        52 	 7.000000 	 0.600976 	 0.006265
        53 	 7.000000 	 0.601269 	 0.005708
        54 	 7.000000 	 0.601506 	 0.005201
        55 	 7.000000 	 0.601709 	 0.004739
        56 	 7.000000 	 0.601873 	 0.004318
        57 	 7.000000 	 0.602014 	 0.003935
        58 	 7.000000 	 0.602126 	 0.003585
        59 	 7.000000 	 0.602224 	 0.003267
        60 	 7.000000 	 0.602306 	 0.002976
        61 	 7.000000 	 0.602371 	 0.002712
        62 	 7.000000 	 0.602427 	 0.002471
        63 	 7.000000 	 0.602471 	 0.002251
        64 	 7.000000 	 0.602511 	 0.002051
        65 	 7.000000 	 0.602544 	 0.001869
        66 	 7.000000 	 0.602569 	 0.001703
        67 	 7.000000 	 0.602592 	 0.001552
        68 	 7.000000 	 0.602612 	 0.001414
        69 	 7.000000 	 0.602626 	 0.001288
        70 	 7.000000 	 0.602639 	 0.001174
        71 	 7.000000 	 0.602651 	 0.001070
        72 	 7.000000 	 0.602659 	 0.000975
        73 	 7.000000 	 0.602668 	 0.000888
        74 	 8.000000 	 0.602674 	 0.000809
        75 	 8.000000 	 0.602680 	 0.000737
        [2.15386169 1.40517538 1.75155998 ... 1.5786708  2.24914669 2.74749123]
        [[2.15386169 2.0965379 ]
         [1.40517538 1.73841308]
         [1.75155998 1.96630653]
         ...
         [1.5786708  1.82758546]
         [2.24914669 2.09450709]
         [2.74749123 2.33255459]]
        [2.0965379  1.73841308 1.96630653 ... 1.82758546 2.09450709 2.33255459]
        elapsed: 0.08082914352416992
        
         best lambda:  0.0029763296520373566
        
         best lambda std. dev:  0.015883776165844302
        
         best coef:  [-2.89480122e+01  3.87657120e-01  1.00434474e-02 -1.47638444e-02
          1.56518514e-01  0.00000000e+00 -2.28921823e-03 -3.44888900e-01
         -3.46534665e-01]
        
         best GLMNet:  {'lambdau': array([7.90539283e-01, 7.20309952e-01, 6.56319601e-01, 5.98013976e-01,
               5.44888063e-01, 4.96481709e-01, 4.52375642e-01, 4.12187837e-01,
               3.75570206e-01, 3.42205584e-01, 3.11804983e-01, 2.84105088e-01,
               2.58865975e-01, 2.35869035e-01, 2.14915080e-01, 1.95822617e-01,
               1.78426275e-01, 1.62575377e-01, 1.48132628e-01, 1.34972934e-01,
               1.22982310e-01, 1.12056901e-01, 1.02102075e-01, 9.30316077e-02,
               8.47669361e-02, 7.72364751e-02, 7.03749995e-02, 6.41230785e-02,
               5.84265609e-02, 5.32361063e-02, 4.85067573e-02, 4.41975507e-02,
               4.02711621e-02, 3.66935831e-02, 3.34338263e-02, 3.04636573e-02,
               2.77573499e-02, 2.52914635e-02, 2.30446396e-02, 2.09974173e-02,
               1.91320646e-02, 1.74324247e-02, 1.58837762e-02, 1.44727053e-02,
               1.31869900e-02, 1.20154942e-02, 1.09480708e-02, 9.97547435e-03,
               9.08928070e-03, 8.28181406e-03, 7.54608052e-03, 6.87570753e-03,
               6.26488862e-03, 5.70833318e-03, 5.20122059e-03, 4.73915849e-03,
               4.31814471e-03, 3.93453264e-03, 3.58499960e-03, 3.26651812e-03,
               2.97632965e-03, 2.71192073e-03, 2.47100117e-03, 2.25148423e-03,
               2.05146858e-03, 1.86922176e-03, 1.70316525e-03, 1.55186075e-03,
               1.41399772e-03, 1.28838206e-03, 1.17392574e-03, 1.06963742e-03,
               9.74613777e-04, 8.88031775e-04, 8.09141480e-04, 7.37259581e-04]), 'cvm': array([1.32794354, 1.22292703, 1.13481835, 1.06167325, 1.00095081,
               0.95054152, 0.90869409, 0.87395456, 0.84511588, 0.82117596,
               0.80130284, 0.78480587, 0.77111164, 0.75974414, 0.75030818,
               0.74244809, 0.72908801, 0.71682279, 0.70664152, 0.69819024,
               0.69117511, 0.68511138, 0.6785909 , 0.67305371, 0.66845763,
               0.66464277, 0.66147643, 0.65464086, 0.63599482, 0.6205351 ,
               0.6076784 , 0.59699995, 0.58815497, 0.5801874 , 0.57304095,
               0.56700578, 0.56200649, 0.55794318, 0.55464407, 0.55190472,
               0.54967906, 0.54750774, 0.54502344, 0.54289758, 0.54115612,
               0.53975023, 0.53861561, 0.53769851, 0.5369726 , 0.53638576,
               0.53592615, 0.53556223, 0.53527887, 0.53506031, 0.5348938 ,
               0.53477021, 0.5346767 , 0.53461606, 0.53457253, 0.53454878,
               0.53453534, 0.53454145, 0.53454912, 0.53456553, 0.53458344,
               0.53460438, 0.53463299, 0.53466219, 0.53468341, 0.53471083,
               0.53473878, 0.53475851, 0.53478052, 0.53480475, 0.53482847,
               0.53484363]), 'cvsd': array([0.01178608, 0.01293004, 0.01366089, 0.01428224, 0.01477845,
               0.01515521, 0.01542664, 0.0156092 , 0.01571898, 0.01577054,
               0.01577649, 0.01574747, 0.0156923 , 0.01561818, 0.01553091,
               0.01543565, 0.01536175, 0.01521551, 0.01507116, 0.01493074,
               0.01479571, 0.01467942, 0.01454884, 0.01441053, 0.01428044,
               0.01415866, 0.01404511, 0.01406737, 0.01382548, 0.01361343,
               0.01342251, 0.01325314, 0.01310364, 0.01285698, 0.01259207,
               0.01240794, 0.0122745 , 0.01218093, 0.01211811, 0.01209786,
               0.0120965 , 0.01213827, 0.01201918, 0.0118633 , 0.01172291,
               0.01160189, 0.01150054, 0.01141143, 0.01133933, 0.01127929,
               0.01122912, 0.01118883, 0.01115662, 0.01113133, 0.01111179,
               0.01109708, 0.01108679, 0.01107902, 0.0110729 , 0.01107114,
               0.01106948, 0.01107177, 0.01107547, 0.01108005, 0.01108465,
               0.0110883 , 0.01109275, 0.01109805, 0.01110229, 0.01110699,
               0.01111198, 0.01111601, 0.0111207 , 0.01112377, 0.01112778,
               0.01113096]), 'cvup': array([1.33972961, 1.23585706, 1.14847923, 1.07595549, 1.01572926,
               0.96569674, 0.92412073, 0.88956376, 0.86083487, 0.8369465 ,
               0.81707933, 0.80055334, 0.78680394, 0.77536232, 0.76583909,
               0.75788374, 0.74444976, 0.7320383 , 0.72171268, 0.71312098,
               0.70597082, 0.6997908 , 0.69313973, 0.68746424, 0.68273806,
               0.67880143, 0.67552153, 0.66870824, 0.6498203 , 0.63414852,
               0.62110091, 0.61025309, 0.60125861, 0.59304439, 0.58563302,
               0.57941372, 0.57428099, 0.57012411, 0.56676219, 0.56400258,
               0.56177556, 0.559646  , 0.55704263, 0.55476088, 0.55287903,
               0.55135213, 0.55011615, 0.54910994, 0.54831193, 0.54766505,
               0.54715527, 0.54675106, 0.54643549, 0.54619164, 0.54600558,
               0.5458673 , 0.54576349, 0.54569508, 0.54564544, 0.54561992,
               0.54560483, 0.54561322, 0.54562459, 0.54564558, 0.54566809,
               0.54569267, 0.54572575, 0.54576024, 0.5457857 , 0.54581782,
               0.54585076, 0.54587452, 0.54590122, 0.54592852, 0.54595624,
               0.54597458]), 'cvlo': array([1.31615746, 1.20999699, 1.12115746, 1.04739101, 0.98617236,
               0.93538631, 0.89326745, 0.85834536, 0.8293969 , 0.80540542,
               0.78552635, 0.7690584 , 0.75541934, 0.74412596, 0.73477727,
               0.72701244, 0.71372626, 0.70160729, 0.69157036, 0.6832595 ,
               0.67637941, 0.67043197, 0.66404206, 0.65864319, 0.65417719,
               0.65048411, 0.64743132, 0.64057349, 0.62216933, 0.60692167,
               0.59425588, 0.58374681, 0.57505134, 0.56733042, 0.56044887,
               0.55459784, 0.54973199, 0.54576224, 0.54252596, 0.53980686,
               0.53758257, 0.53536947, 0.53300426, 0.53103428, 0.52943322,
               0.52814834, 0.52711506, 0.52628708, 0.52563327, 0.52510648,
               0.52469703, 0.5243734 , 0.52412225, 0.52392899, 0.52378201,
               0.52367313, 0.52358991, 0.52353705, 0.52349963, 0.52347764,
               0.52346586, 0.52346967, 0.52347365, 0.52348548, 0.52349879,
               0.52351608, 0.52354024, 0.52356414, 0.52358113, 0.52360384,
               0.5236268 , 0.5236425 , 0.52365982, 0.52368098, 0.52370069,
               0.52371267]), 'nzero': array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3,
               3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,
               7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
               7, 7, 7, 7, 7, 7, 7, 7, 8, 8]), 'name': 'Mean-Squared Error', 'glmnet_fit': {'a0': array([  2.07155206,   1.92869743,   1.79853362,   1.6799332 ,
                 1.57186891,   1.47340475,   1.38368788,   1.30194121,
                 1.22745669,   1.15958917,   1.09775081,   1.041406  ,
                 0.99006671,   0.94328826,   0.90066548,   0.86182919,
                 0.78419117,   0.70670286,   0.6360984 ,   0.57176624,
                 0.51314918,   0.47506172,   0.58273794,   0.68084849,
                 0.77024317,   0.85169627,   0.92591331,   0.1340664 ,
                -3.21802346,  -6.26774253,  -9.04592177, -11.588099  ,
               -13.8944293 , -16.01874985, -18.08798159, -19.97898154,
               -21.71286443, -23.2830481 , -24.71279238, -26.02599746,
               -27.21307621, -28.26744172, -28.9480122 , -29.62513797,
               -30.24990969, -30.82753782, -31.34777174, -31.82823844,
               -32.25971861, -32.65911099, -33.01681384, -33.34884939,
               -33.64528032, -33.92136384, -34.16690208, -34.39649895,
               -34.59975107, -34.79071341, -34.95880945, -35.11764682,
               -35.26352689, -35.39020017, -35.51056873, -35.61482234,
               -35.71486741, -35.80749594, -35.88589466, -35.96166964,
               -36.03222638, -36.0907743 , -36.14802348, -36.20180937,
               -36.24520991, -36.29447496, -36.33196639, -36.3685333 ]), 'beta': array([[ 0.00000000e+00,  3.69089068e-02,  7.05389280e-02,
                 1.01181351e-01,  1.29101585e-01,  1.54541463e-01,
                 1.77721332e-01,  1.98841966e-01,  2.18086300e-01,
                 2.35621021e-01,  2.51598006e-01,  2.66155639e-01,
                 2.79420013e-01,  2.91506016e-01,  3.02518331e-01,
                 3.12552343e-01,  3.22748854e-01,  3.32207839e-01,
                 3.40826515e-01,  3.48679531e-01,  3.55834907e-01,
                 3.62318017e-01,  3.67885055e-01,  3.72957535e-01,
                 3.77579389e-01,  3.81790650e-01,  3.85627795e-01,
                 3.88095546e-01,  3.87056210e-01,  3.86116846e-01,
                 3.85261953e-01,  3.84464984e-01,  3.83755508e-01,
                 3.83125549e-01,  3.82627801e-01,  3.82165258e-01,
                 3.81726613e-01,  3.81342219e-01,  3.80993473e-01,
                 3.80659146e-01,  3.80369485e-01,  3.82822873e-01,
                 3.87657120e-01,  3.91827446e-01,  3.95567845e-01,
                 3.99006714e-01,  4.02098409e-01,  4.04953310e-01,
                 4.07516028e-01,  4.09888544e-01,  4.12012573e-01,
                 4.13984518e-01,  4.15744153e-01,  4.17383249e-01,
                 4.18840038e-01,  4.20202429e-01,  4.21407331e-01,
                 4.22539521e-01,  4.23534647e-01,  4.24475087e-01,
                 4.25342286e-01,  4.26092646e-01,  4.26805003e-01,
                 4.27418926e-01,  4.28007930e-01,  4.28556755e-01,
                 4.29017421e-01,  4.29462125e-01,  4.29879179e-01,
                 4.30220014e-01,  4.30552663e-01,  4.30867949e-01,
                 4.31115041e-01,  4.31407474e-01,  4.31626377e-01,
                 4.31836134e-01],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  1.33369662e-03,  2.76189648e-03,
                 4.06321901e-03,  5.24893562e-03,  6.32931645e-03,
                 7.31389310e-03,  8.21261862e-03,  9.03150383e-03,
                 9.77764153e-03,  1.04574944e-02,  1.10769510e-02,
                 1.14705147e-02,  1.12926558e-02,  1.11317164e-02,
                 1.09852236e-02,  1.08491056e-02,  1.07275245e-02,
                 1.06183086e-02,  1.05377293e-02,  1.04630180e-02,
                 1.03924495e-02,  1.03303673e-02,  1.02740180e-02,
                 1.02202715e-02,  1.01734710e-02,  1.00897532e-02,
                 1.00434474e-02,  9.99046829e-03,  9.94106280e-03,
                 9.89364905e-03,  9.85243264e-03,  9.81285130e-03,
                 9.77878640e-03,  9.74577568e-03,  9.71766435e-03,
                 9.69012117e-03,  9.66695992e-03,  9.64396712e-03,
                 9.62492522e-03,  9.60572308e-03,  9.59011509e-03,
                 9.57407572e-03,  9.56133872e-03,  9.54794508e-03,
                 9.53533462e-03,  9.52584661e-03,  9.51565144e-03,
                 9.50810723e-03,  9.49964598e-03,  9.49143017e-03,
                 9.48588215e-03,  9.47946949e-03,  9.47311374e-03,
                 9.46919501e-03,  9.46440835e-03,  9.45950373e-03,
                 9.45688749e-03,  9.45132176e-03,  9.44858552e-03,
                 9.44130490e-03],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00, -5.45971201e-03,
                -1.47638444e-02, -2.29527847e-02, -3.03213745e-02,
                -3.71200603e-02, -4.32155195e-02, -4.88623884e-02,
                -5.39137617e-02, -5.86079073e-02, -6.27931194e-02,
                -6.66959919e-02, -7.01616765e-02, -7.34069655e-02,
                -7.62745909e-02, -7.89731217e-02, -8.13432337e-02,
                -8.35867927e-02, -8.55424347e-02, -8.74068838e-02,
                -8.91292068e-02, -9.06024308e-02, -9.20153003e-02,
                -9.32180705e-02, -9.43866996e-02, -9.54795488e-02,
                -9.63807212e-02, -9.72633558e-02, -9.80951779e-02,
                -9.87597389e-02, -9.94198884e-02, -1.00049959e-01,
                -1.00529109e-01, -1.01125665e-01, -1.01555120e-01,
                -1.01981360e-01],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 1.00918465e-03,  1.50789768e-02,  2.79207547e-02,
                 3.96644557e-02,  5.03268779e-02,  6.00383505e-02,
                 6.89282660e-02,  7.69912154e-02,  1.08926792e-01,
                 1.56518514e-01,  1.98800026e-01,  2.36935453e-01,
                 2.72099839e-01,  3.03666611e-01,  3.32875537e-01,
                 3.59039527e-01,  3.83318526e-01,  4.04999643e-01,
                 4.25184157e-01,  4.43141508e-01,  4.59923618e-01,
                 4.74786190e-01,  4.88739712e-01,  5.01028304e-01,
                 5.12628595e-01,  5.22773570e-01,  5.32413696e-01,
                 5.41308481e-01,  5.48953012e-01,  5.56257505e-01,
                 5.62508429e-01,  5.68553441e-01,  5.74194278e-01,
                 5.78881710e-01,  5.83448614e-01,  5.87740830e-01,
                 5.91206035e-01,  5.94626325e-01,  5.97878609e-01,
                 6.00389627e-01,  6.03440785e-01,  6.05675334e-01,
                 6.07851891e-01],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00, -4.56049861e-08,
                -1.37960902e-07],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                -2.97720011e-04, -6.06104752e-04, -8.87055238e-04,
                -1.14297406e-03, -1.37622247e-03, -1.58875608e-03,
                -1.78233867e-03, -1.95878727e-03, -2.12742966e-03,
                -2.28921823e-03, -2.43583353e-03, -2.56923372e-03,
                -2.69085768e-03, -2.80156567e-03, -2.90253796e-03,
                -2.99443853e-03, -3.07827340e-03, -3.15456129e-03,
                -3.22416821e-03, -3.28749367e-03, -3.34528751e-03,
                -3.39785044e-03, -3.44583583e-03, -3.48946222e-03,
                -3.52930315e-03, -3.56550844e-03, -3.59858591e-03,
                -3.62875304e-03, -3.65613482e-03, -3.68115910e-03,
                -3.70386703e-03, -3.72463531e-03, -3.74359159e-03,
                -3.76075916e-03, -3.77646690e-03, -3.79081127e-03,
                -3.80377682e-03, -3.81564822e-03, -3.82649783e-03,
                -3.83627584e-03, -3.84536500e-03, -3.85318347e-03,
                -3.85991343e-03],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                -4.26219891e-04, -4.77517531e-03, -8.73778142e-03,
                -1.23483605e-02, -1.56381857e-02, -1.86357520e-02,
                -2.97667447e-02, -6.62889605e-02, -9.95115211e-02,
                -1.29775326e-01, -1.57480595e-01, -1.82604176e-01,
                -2.05773443e-01, -2.28277678e-01, -2.48849642e-01,
                -2.67724200e-01, -2.84806306e-01, -3.00359530e-01,
                -3.14656427e-01, -3.27569944e-01, -3.38568753e-01,
                -3.44888900e-01, -3.51353261e-01, -3.57344154e-01,
                -3.62896139e-01, -3.67890055e-01, -3.72510103e-01,
                -3.76651761e-01, -3.80492916e-01, -3.83925855e-01,
                -3.87119816e-01, -3.89964150e-01, -3.92620478e-01,
                -3.94975913e-01, -3.97185544e-01, -3.99134759e-01,
                -4.00973133e-01, -4.02584619e-01, -4.04114281e-01,
                -4.05519980e-01, -4.06733693e-01, -4.07893189e-01,
                -4.08891532e-01, -4.09855867e-01, -4.10749904e-01,
                -4.11500238e-01, -4.12230965e-01, -4.12912688e-01,
                -4.13472586e-01, -4.14025097e-01, -4.14545665e-01,
                -4.14960450e-01, -4.15441966e-01, -4.15806129e-01,
                -4.16167317e-01],
               [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
                -9.76512662e-03, -4.87586353e-02, -8.42328207e-02,
                -1.16548205e-01, -1.46123093e-01, -1.72949928e-01,
                -1.97665029e-01, -2.21590530e-01, -2.43457677e-01,
                -2.63512693e-01, -2.81670091e-01, -2.98203052e-01,
                -3.13392971e-01, -3.27119885e-01, -3.39115060e-01,
                -3.46534665e-01, -3.53989218e-01, -3.60878352e-01,
                -3.67252791e-01, -3.72991489e-01, -3.78294486e-01,
                -3.83054050e-01, -3.87462486e-01, -3.91408025e-01,
                -3.95073220e-01, -3.98342708e-01, -4.01390500e-01,
                -4.04098459e-01, -4.06633290e-01, -4.08874683e-01,
                -4.10983195e-01, -4.12836695e-01, -4.14590719e-01,
                -4.16201933e-01, -4.17598433e-01, -4.18927767e-01,
                -4.20076927e-01, -4.21182071e-01, -4.22205705e-01,
                -4.23069724e-01, -4.23906908e-01, -4.24686908e-01,
                -4.25332016e-01, -4.25964718e-01, -4.26559676e-01,
                -4.27037839e-01, -4.27584528e-01, -4.27999904e-01,
                -4.28408964e-01]]), 'dev': array([0.        , 0.07984633, 0.14613615, 0.20117112, 0.24686213,
               0.2847956 , 0.31628864, 0.34243471, 0.36414164, 0.38216311,
               0.39712485, 0.40954636, 0.4198589 , 0.42842056, 0.43552861,
               0.44142983, 0.45159058, 0.46082763, 0.4684964 , 0.47486315,
               0.48014893, 0.48467976, 0.48970616, 0.49387917, 0.49734368,
               0.50021998, 0.50260793, 0.50784849, 0.52185647, 0.53347216,
               0.54311702, 0.55115888, 0.55780898, 0.56360578, 0.56911693,
               0.57370753, 0.57754161, 0.58070799, 0.58333684, 0.58553607,
               0.58734952, 0.58962779, 0.59180646, 0.59364078, 0.59516199,
               0.59644205, 0.59749115, 0.59837571, 0.59909904, 0.59971064,
               0.60020939, 0.6006325 , 0.60097642, 0.60126932, 0.60150647,
               0.60170939, 0.60187289, 0.6020136 , 0.60212631, 0.60222397,
               0.60230602, 0.6023707 , 0.6024271 , 0.60247148, 0.60251067,
               0.60254397, 0.60256948, 0.6025922 , 0.60261166, 0.60262621,
               0.60263938, 0.6026508 , 0.60265903, 0.60266799, 0.60267415,
               0.60267971]), 'nulldev': array([0.71665039, 1.22201514, 1.94477545, ..., 0.48518478, 1.44347715,
               0.36306899]), 'df': array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3,
               3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,
               7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
               7, 7, 7, 7, 7, 7, 7, 7, 8, 8]), 'lambdau': array([7.90539283e-01, 7.20309952e-01, 6.56319601e-01, 5.98013976e-01,
               5.44888063e-01, 4.96481709e-01, 4.52375642e-01, 4.12187837e-01,
               3.75570206e-01, 3.42205584e-01, 3.11804983e-01, 2.84105088e-01,
               2.58865975e-01, 2.35869035e-01, 2.14915080e-01, 1.95822617e-01,
               1.78426275e-01, 1.62575377e-01, 1.48132628e-01, 1.34972934e-01,
               1.22982310e-01, 1.12056901e-01, 1.02102075e-01, 9.30316077e-02,
               8.47669361e-02, 7.72364751e-02, 7.03749995e-02, 6.41230785e-02,
               5.84265609e-02, 5.32361063e-02, 4.85067573e-02, 4.41975507e-02,
               4.02711621e-02, 3.66935831e-02, 3.34338263e-02, 3.04636573e-02,
               2.77573499e-02, 2.52914635e-02, 2.30446396e-02, 2.09974173e-02,
               1.91320646e-02, 1.74324247e-02, 1.58837762e-02, 1.44727053e-02,
               1.31869900e-02, 1.20154942e-02, 1.09480708e-02, 9.97547435e-03,
               9.08928070e-03, 8.28181406e-03, 7.54608052e-03, 6.87570753e-03,
               6.26488862e-03, 5.70833318e-03, 5.20122059e-03, 4.73915849e-03,
               4.31814471e-03, 3.93453264e-03, 3.58499960e-03, 3.26651812e-03,
               2.97632965e-03, 2.71192073e-03, 2.47100117e-03, 2.25148423e-03,
               2.05146858e-03, 1.86922176e-03, 1.70316525e-03, 1.55186075e-03,
               1.41399772e-03, 1.28838206e-03, 1.17392574e-03, 1.06963742e-03,
               9.74613777e-04, 8.88031775e-04, 8.09141480e-04, 7.37259581e-04]), 'npasses': 800, 'jerr': 0, 'dim': array([ 8, 76]), 'offset': False, 'class': 'elnet'}, 'lambda_min': array([0.00297633]), 'lambda_1se': array([0.01588378]), 'class': 'cvglmnet'}
    

    2 – GLMNet + nnetsauce

    import glmnetforpython as glmnet
    import mlsauce as ms
    import nnetsauce as ns
    from sklearn.datasets import load_breast_cancer, load_wine, load_iris
    from sklearn.model_selection import train_test_split
    from time import time
    
    
    for dataset in [load_breast_cancer, load_wine, load_iris]:
    
        print(f"\n\n dataset: {dataset.__name__} -----")
        X, y = dataset(return_X_y=True)
    
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
                                                            random_state=123)
    
        regr = ms.MultiTaskRegressor(glmnet.GLMNet(lambdau=1000))
    
        model = ms.GenericBoostingClassifier(regr, tolerance=1e-2)
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        accuracy = model.score(X_test, y_test)
        print(f"Accuracy: {accuracy}")
    
        clf = ns.CustomClassifier(ns.MultitaskClassifier(glmnet.GLMNet(lambdau=1000)),
                                  n_hidden_features=10)
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        accuracy = model.score(X_test, y_test)
        print(f"Accuracy: {accuracy}")
    
    
        clf = ns.CustomClassifier(ns.SimpleMultitaskClassifier(glmnet.GLMNet(lambdau=1000)))
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        accuracy = model.score(X_test, y_test)
        print(f"Accuracy: {accuracy}")
    
        clf = ns.DeepClassifier(ns.MultitaskClassifier(glmnet.GLMNet(lambdau=1000)))
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        accuracy = model.score(X_test, y_test)
        print(f"Accuracy: {accuracy}")
    
        clf = ns.DeepClassifier(ns.SimpleMultitaskClassifier(glmnet.GLMNet(lambdau=1000)))
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        accuracy = model.score(X_test, y_test)
        print(f"Accuracy: {accuracy}")
    
        /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
          and should_run_async(code)
    
    
        
        
         dataset: load_breast_cancer -----
    
    
        100%|██████████| 100/100 [00:18<00:00,  5.46it/s]
    
    
        Training time: 18.33358597755432 seconds
        Accuracy: 0.9649122807017544
    
    
        100%|██████████| 100/100 [00:18<00:00,  5.31it/s]
    
    
        Training time: 18.904021501541138 seconds
        Accuracy: 0.9649122807017544
    
    
        100%|██████████| 100/100 [00:12<00:00,  8.24it/s]
    
    
        Training time: 12.280655860900879 seconds
        Accuracy: 0.9649122807017544
    
    
        100%|██████████| 100/100 [00:23<00:00,  4.32it/s]
    
    
        Training time: 23.297285318374634 seconds
        Accuracy: 0.9649122807017544
    
    
        100%|██████████| 100/100 [00:24<00:00,  4.08it/s]
    
    
        Training time: 24.91062593460083 seconds
        Accuracy: 0.9649122807017544
        
        
         dataset: load_wine -----
    
    
        100%|██████████| 100/100 [00:03<00:00, 28.64it/s]
    
    
        Training time: 3.5058298110961914 seconds
        Accuracy: 1.0
    
    
        100%|██████████| 100/100 [00:05<00:00, 16.76it/s]
    
    
        Training time: 6.019681453704834 seconds
        Accuracy: 1.0
    
    
        100%|██████████| 100/100 [00:08<00:00, 11.76it/s]
    
    
        Training time: 8.692431688308716 seconds
        Accuracy: 1.0
    
    
        100%|██████████| 100/100 [00:20<00:00,  4.85it/s]
    
    
        Training time: 20.893232583999634 seconds
        Accuracy: 1.0
    
    
        100%|██████████| 100/100 [00:13<00:00,  7.42it/s]
    
    
        Training time: 13.870125532150269 seconds
        Accuracy: 1.0
        
        
         dataset: load_iris -----
    
    
         14%|█▍        | 14/100 [00:00<00:05, 16.97it/s]
    
    
        Training time: 0.8306210041046143 seconds
        Accuracy: 0.9333333333333333
    
    
        100%|██████████| 14/14 [00:00<00:00, 35.76it/s]
    
    
        Training time: 0.40160202980041504 seconds
        Accuracy: 0.9333333333333333
    
    
        100%|██████████| 14/14 [00:00<00:00, 30.18it/s]
    
    
        Training time: 0.47559595108032227 seconds
        Accuracy: 0.9333333333333333
    
    
        100%|██████████| 14/14 [00:00<00:00, 30.39it/s]
    
    
        Training time: 0.4738032817840576 seconds
        Accuracy: 0.9333333333333333
    
    
        100%|██████████| 14/14 [00:00<00:00, 26.63it/s]
    
        Training time: 0.5447156429290771 seconds
        Accuracy: 0.9333333333333333
    
    from sklearn.datasets import load_diabetes, fetch_california_housing
    
    for dataset in [load_diabetes, fetch_california_housing]:
    
        print(f"\n\n dataset: {dataset.__name__} -----")
    
        X, y = dataset(return_X_y=True)
    
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
                                                            random_state=123)
    
        regr = glmnet.GLMNet(lambdau=1000)
    
        model = ms.GenericBoostingRegressor(regr, backend="cpu", tolerance=1e-2)
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        preds = model.predict(X_test)
        rmse = ((preds - y_test)**2).mean()**0.5
        print(f"RMSE: {rmse}")
    
        model = ns.CustomRegressor(regr)
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        preds = model.predict(X_test)
        rmse = ((preds - y_test)**2).mean()**0.5
        print(f"RMSE: {rmse}")
    
    
        model = ns.DeepRegressor(regr)
    
        # Train the model on the training datac
        start_time = time()
        model.fit(X_train, y_train)
        end_time = time()
        print(f"Training time: {end_time - start_time} seconds")
    
        # Evaluate the model's performance (e.g., using accuracy)
        preds = model.predict(X_test)
        rmse = ((preds - y_test)**2).mean()**0.5
        print(f"RMSE: {rmse}")
    
        /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
          and should_run_async(code)
    
    
        
        
         dataset: load_diabetes -----
    
    
         57%|█████▋    | 57/100 [00:00<00:00, 230.67it/s]
    
    
        Training time: 0.25351572036743164 seconds
        RMSE: 50.47735955241068
        Training time: 0.04386782646179199 seconds
        RMSE: 51.2098185574396
        Training time: 0.09994053840637207 seconds
        RMSE: 51.02354464725009
        
        
         dataset: fetch_california_housing -----
    
    
         52%|█████▏    | 52/100 [00:00<00:00, 58.32it/s]
    
    
        Training time: 0.9048025608062744 seconds
        RMSE: 0.8216935762732704
        Training time: 0.1747438907623291 seconds
        RMSE: 0.8218417233321206
        Training time: 0.512531042098999 seconds
        RMSE: 0.8218417233321208
    

    xxx

    To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - R.

    R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
    Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
    Continue reading: GLMNet in Python: Generalized Linear Models


沪ICP备19023445号-2号
友情链接