IT博客汇
  • 首页
  • 精华
  • 技术
  • 设计
  • 资讯
  • 扯淡
  • 权利声明
  • 登录 注册

    Quicksummary of data for modeling and Machine Learning

    R-Blog on Data modelling to develop ...发表于 2025-05-04 01:00:00
    love 0
    [This article was first published on R-Blog on Data modelling to develop ..., and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
    Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

    Introduction

    This blog is about the improved function, quicksummary in the Dyn4cast package. The function provides quick overview of data and particularly outputting five different means.

    Observational study involves procuring large mass of data for analysis and modeling. So, there is always need to have an overview of the data to decide on the appropriate analysis to be undertaken. This is where this function is unique because five different means are computed simultaneously, in spite of the one line code arguments. The five means are:

    Arithmetic

    Geometric

    Harmonic

    Quadratic

    Cubic.

    The basic usage of the codes are:

    quicksummary(x, Type, Cut, Up, Down, ci = 0.95)

    Arguments

    x The data to be summarised. Only numeric data is allowed.

    Type The type of data to be summarized. There are two options here 1 or 2, 1 = Continuous and 2 = Likert-type

    Cut The cut-off point for Likert-type data

    Up The top Likert-type scale, for example, Agree, Constraints etc which would appear in the remark column.

    Down The lower Likert-type scale, for example, Disagree, ⁠Not a Constraint⁠ etc which would appear in the remark column.

    ci Confidence interval which is defaults to 0.95.

    Let us go!

    Load library

    library(Dyn4cast)

    Computation of data summaries

    Up <- "Constraint"
    Down <- "Not a constraint"
    sum1 <- quicksummary(x = Quicksummary, Type = 2, Cut = 2.60, Up = Up, Down = Down)
    # Continuous data
    x <- select(linearsystems, 1:6)
    sum2 <- quicksummary(x = x, Type = 1)

    Likert-type summaries

    General summaries

    sum1$Summary
     Mean SD SE.Mean Nobs Rank Remark
    Likert scores 1 4.34 1.13 0.11 103 1 Constraint
    Likert scores 14 3.85 1.35 0.13 103 2 Constraint
    Likert scores 3 3.49 1.36 0.13 103 3 Constraint
    Likert scores 10 3.49 1.51 0.15 103 4 Constraint
    Likert scores 15 3.43 1.38 0.14 103 5 Constraint
    Likert scores 19 3.43 1.23 0.12 103 6 Constraint
    Likert scores 17 3.41 1.25 0.12 103 7 Constraint
    Likert scores 2 3.23 1.57 0.15 103 8 Constraint
    Likert scores 18 3.23 1.21 0.12 103 9 Constraint
    Likert scores 4 3.17 1.34 0.13 103 10 Constraint
    Likert scores 7 3.07 1.32 0.13 103 11 Constraint
    Likert scores 21 3.07 1.32 0.13 103 12 Constraint
    Likert scores 26 3.03 1.22 0.12 103 13 Constraint
    Likert scores 20 2.98 1.18 0.12 103 14 Constraint
    Likert scores 16 2.94 1.47 0.14 103 15 Constraint
    Likert scores 22 2.94 1.31 0.13 103 16 Constraint
    Likert scores 13 2.93 1.37 0.14 103 17 Constraint
    Likert scores 11 2.89 1.20 0.12 103 18 Constraint
    Likert scores 25 2.88 1.31 0.13 103 19 Constraint
    Likert scores 23 2.84 1.48 0.15 103 20 Constraint
    Likert scores 8 2.83 1.33 0.13 103 21 Constraint
    Likert scores 6 2.77 1.44 0.14 103 22 Constraint
    Likert scores 24 2.71 1.30 0.13 103 23 Constraint
    Likert scores 5 2.67 1.27 0.13 103 24 Constraint
    Likert scores 9 2.63 1.34 0.13 103 25 Constraint
    Likert scores 12 2.41 1.26 0.12 103 26 Not a constraint
    Likert scores 27 2.41 1.35 0.13 103 27 Not a constraint
    Likert scores 29 0.89 1.78 0.18 103 28 Not a constraint
    Likert scores 28 0.26 0.83 0.08 103 29 Not a constraint

    Means

    sum1$Means
     Arithmetic Geometric Quadratic Harmonic Cubic
    Likert scores 1 4.34 4.11 4.48 3.74 4.58
    Likert scores 2 3.23 2.74 3.59 2.21 3.83
    Likert scores 3 3.49 3.13 3.74 2.70 3.92
    Likert scores 4 3.17 2.84 3.43 2.48 3.64
    Likert scores 5 2.67 2.34 2.95 2.00 3.19
    Likert scores 6 2.77 2.37 3.12 1.99 3.39
    Likert scores 7 3.07 2.71 3.34 2.31 3.53
    Likert scores 8 2.83 2.47 3.12 2.10 3.35
    Likert scores 9 2.63 2.29 2.95 1.98 3.22
    Likert scores 10 3.49 3.04 3.80 2.50 4.01
    Likert scores 11 2.89 2.62 3.13 2.32 3.33
    Likert scores 12 2.41 2.08 2.72 1.79 2.98
    Likert scores 13 2.93 2.55 3.24 2.14 3.46
    Likert scores 14 3.85 3.49 4.08 2.96 4.23
    Likert scores 15 3.43 3.07 3.69 2.64 3.89
    Likert scores 16 2.94 2.55 3.28 2.18 3.56
    Likert scores 17 3.41 3.11 3.63 2.74 3.79
    Likert scores 18 3.23 2.93 3.45 2.55 3.61
    Likert scores 19 3.43 3.15 3.64 2.80 3.80
    Likert scores 20 2.98 2.70 3.20 2.38 3.38
    Likert scores 21 3.07 2.73 3.34 2.35 3.55
    Likert scores 22 2.94 2.60 3.22 2.22 3.43
    Likert scores 23 2.84 2.41 3.20 1.99 3.47
    Likert scores 24 2.71 2.37 3.00 2.03 3.24
    Likert scores 25 2.88 2.53 3.16 2.15 3.37
    Likert scores 26 3.03 2.74 3.26 2.40 3.45
    Likert scores 27 2.41 0.00 2.76 0.00 3.03
    Likert scores 28 0.26 0.00 0.86 0.00 1.36
    Likert scores 29 0.89 0.00 1.98 0.00 2.62

    Continous data summaries

    General summaries

    sum2$Summary
     MKTcost Age Experience Years spent in formal education
    Mean 3911.55 38.13 11.78 10.35
    SD 2754.19 11.14 4.55 5.19
    SE.Mean 275.42 1.11 0.46 0.52
    Min 0.00 20.00 2.00 0.00
    Median 2950.00 36.50 11.00 12.00
    Max 14000.00 68.00 20.00 20.00
    Q1 1850.00 30.00 8.75 7.00
    Q3 5760.00 45.00 15.00 14.00
    Skewness 1.19 0.83 0.38 -0.72
    Kurtosis 1.32 0.01 -0.77 -0.42
    Nobs 100.00 100.00 100.00 100.00
    Household size Years as a cooperative member
    Mean 8.30 10.16
    SD 3.60 3.80
    SE.Mean 0.36 0.38
    Min 0.00 2.00
    Median 8.00 10.00
    Max 17.00 20.00
    Q1 5.00 7.75
    Q3 11.00 12.00
    Skewness 0.18 0.64
    Kurtosis -0.37 -0.20
    Nobs 100.00 100.00

    Means

    sum2$Means
     MKTcost Age Experience Years spent in formal education
    Arithmetic 3911.55 38.13 11.78 10.35
    Geometric 0.00 36.64 10.86 0.00
    Quadratic 4775.97 39.71 12.62 11.57
    Harmonic 0.00 35.26 9.81 0.00
    Cubic 5561.65 41.33 13.38 12.25
    Household size Years as a cooperative member
    Arithmetic 8.30 10.16
    Geometric 0.00 9.46
    Quadratic 9.04 10.84
    Harmonic 0.00 8.70
    Cubic 9.65 11.49

    Welcome to the world of easy Data Science and easy Machine Learning!

    To leave a comment for the author, please follow the link and comment on their blog: R-Blog on Data modelling to develop ....

    R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
    Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
    Continue reading: Quicksummary of data for modeling and Machine Learning


沪ICP备19023445号-2号
友情链接