5月7日,记者获悉,腾讯技术团队针对DeepSeek开源的DeepEP通信框架进行深度优化,使其在多种网络环境下均实现显著性能提升。经测试,优化后的通信框架性能在RoCE网络环境提升100%,IB网络环境提升30%,为企业开展AI大模型训练提供更高效的解决方案。相关技术方案获得了DeepSeek公开致谢,称这是一次“huge speedup”代码贡献。自今年2月DeepSeek开源包括DeepEP在内的五大代码库以来,该团队便向业界展示了如何利用有限的硬件资源实现接近万卡集群的性能。在这些技术中,DeepEP凭借突破性的方法提升了300%的通信效率,成功解决了MoE架构大模型对英伟达NCCL的依赖问题。但该技术在成本较低、适用面更广的RoCE网络环境中表现不佳,限制了其在更广泛场景的应用。这一痛点引发了开源社区的持续讨论。腾讯星脉网络团队基于在RoCE网络领域的深厚积累,在DeepEP开源后便展开技术攻关,发现两大关键瓶颈:一是对于双端口网卡带宽利用率不足,二是CPU控制面交互存在时延。腾讯在RoCE网络优化方面的突破,首先体现在带宽分配的智能化,通过拓扑感知的多QP建链技术,智能分配数据流,优化了双端口网卡的带宽利用率,确保每条数据通道都能得到充分使用。此举有效避免了带宽浪费,为RoCE网络的性能提升提供了有力支撑。其次,腾讯还着力解决了GPU通信中的CPU控制瓶颈问题。通过基于
...
继续阅读